
How Einstein and/or Schrödinger
should have discovered Bell’s Theorem

in 1936

Terry Rudolph

June 1, 2012 - xArqiv



This note shows how one can be led from considerations of quantum steer-
ing to Bell’s theorem. The point is that steering remote systems by choosing
between two measurements can be described in a local theory if we take quan-
tum states to be associated many-to-one with the underlying “real states”
of the world. Once one adds a third measurement this is no longer possible.
Historically this is not how Bell’s theorem arose - there are slight and subtle
differences in the arguments - but it could have been.

Afterword

Following is the appendix of an incomplete paper from mid-20031, that I
completely forgot existed until a bit over a year ago when a very nice talk
by Howard Wiseman2 triggered me into searching through old notes for my
vaguely recollected version of “Bell’s theorem via steering”. The somewhat
long full paper titled Quassical Mechanics is incomplete, it primarily contains
a variety of examples of “toy theories” following the ideas of Rob Spekkens 3.
One of them (eventually!) led to, and was superseded by, arXiv:1111.5057.
Having given up on myself getting around to completing it anytime soon, but
having had a discussion with Reinhard Werner the week before last during
which he expressed the opinion that ‘Einstein should have discovered Bell’s
theorem via steering’, I’m posting this particular part of it as-is. The simple
structure of the argument has not quite been captured yet by recent work on
steering and nonlocality (primarily by Wiseman and colleagues4).

Basically the appendix is about how, what we would now call a “ψ-epistemic”
interpretation of quantum states (following Harrigan and Spekkens5, can be
used to save locality when one considers steering the remote quantum state
of a system using only two measurements, as was done in the EPR paper.
However, as soon as one adds a generic third measurement, locality cannot
be saved. This seems to contradict the well known fact that CHSH inequal-
ity violation only requires a choice between two measurements. But that
argument actually relies on looking at correlations of the two measurements

1The only changes I have made are to add references and change 1932 to 1936!
2Based primarily around H. Wiseman, Contemporary Physics 47, 79-88 (2006); quant-

ph/0509061
3W. Spekkens, Phys. Rev. A 75, 032110 (2007); quant-ph/0401052’
4H. M. Wiseman, S. J. Jones, and A. C. Doherty, Phys. Rev. Lett. 98, 140402 (2007)
5N. Harrigan, R.W. Spekkens, Found. Phys. 40, 125 (2010);quant-ph/0706.2661.



with a pair of measurements at the remote system as well. The argument
I’m interested in here is about what just one party can infer about the “real
state” of affairs at the remote system necessarily being changed (“steered”)
nonlocally based solely on their ability to steer its quantum state by, in this
case, one of three different measurements. Why I like it is that one never
talks about the real state of affairs (the “on tic state”) of the system being
measured to do the steering.

The origins of my thinking at all about classical versus quantum steering
go back to working with Rob Spekkens on two party cryptography67 where
steering plays a crucial role, and much of my thinking was influenced of course
by discussions with him. After he sent me his first ideas about and proofs of
preparation contextuality8 I simplified them based around what I knew from
this simple nonlocality proof, and conversely in this version below I mention
preparation non-contextuality as being the constraint that locality imposes
for this style of argument. However; as far as I can see the precise and inter-
esting connections between proofs of nonlocality and proofs of preparation
contextuality have still not been completely fleshed out, though Barrett (pri-
vate communication) has made some progress in this regard. APPENDIX
A of incomplete article Quassical Mechanics - draft of July 29, 2003

AHow Einstein and/or Schrödinger should have

discovered Bell?s theorem in 1936

Bell’s theorem - the empirical fact that features of this universe cannot be
described by a local theory - is a statement of physics which transcends
merely quantum mechanics. Bell’s theorem is the only facet of quantum
mechanics I believe will still be considered a fascinating insight into nature
in a few hundred years time.

In this appendix I will attempt a little revisionist history. In particular, I will
attempt to show how a very simple argument establishing the impossibility
of a local hidden variable (LHV) description of QM was lingering on the edge

6R.W. Spekkens and T. Rudolph, Quantum Inform. Compu. 2, 66 (2002); quant-
ph/0107042.

7T. Rudolph and R.W. Spekkens, Phys. Rev. A 70, 052306 (2004); quant-ph/0310060
8R.W. Spekkens, Phys. Rev. A 71, 052108 (2005); quant-ph/0406166
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of Schrödinger’s and Einstein’s consciousness in 1936. In particular, in 1936
the two of them, via various correspondences [1], were collectively considering
the following features of QM:

● The quantum mechanical wavefunction may not be a complete descrip-
tion. The possibility that the wave-function was an epistemic “catalog
of information” was under consideration.

● The possibility of steering. Inspired by the EPR paper, Schrödinger had
proven the quantum steering theorem, in large (though not complete)
generality.

Both knew that if pure quantum states are taken to be states of reality, then
the possibility of steering is violently incompatible with locality. In fact, the
term ‘steering’ was chosen by Schrödinger precisely to reflect this fact - in
such scenarios it seems that an action performed on one half of an entangled
system nonlocally “steers” or “drives” the wavefunction of the other system9.
The purpose of this section is to show how, by a simple argument, this con-
ceptual incompatibility could have been proven algebraically to hold for all
LHV theories, thereby establishing what we know today as Bell’s theorem.

The quantum steering theorem is [2]:

Theorem: Given an entangled state ∣ψAB⟩ of two systems A,B, a measure-
ment on system A can collapse system B to the set of states {∣φi⟩} with
associated probabilities pi, if and only if

ρB = ∑
i

pi ∣φi⟩ ⟨φi∣

where ρB ≡ TrA ∣ψAB⟩ ⟨ψAB ∣ is the reduced state of system B. Schrödinger in
fact only proved the theorem for ensembles of states ∣φi⟩ which are linearly
independent (possibly non- orthogonal); this is more than we will need here.

In examining the description of steering in a local hidden variable theory,
we presume that the actual physical properties of system B are described

9At the end of his paper on steering Schrödinger mused that perhaps the resolution
would be found in a certain dephasing process (known today as ‘decoherence’) which
prevents us from creating spatially separated entangled states in practice. This has turned
out not to be the case.
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by a complete set of variables λ. No claims are made about the specific
nature of these variables, other than they should correctly reproduce the
predictions of QM. This entails certain restrictions. For instance, consider a
von-Neumann measurement described in QM by the two projection opera-
tors ∣χ⟩ ⟨χ∣, I −∣χ⟩ ⟨χ∣. We know that there is a state ∣χ⟩ of the system, which
gives one measurement outcome with certainty, the other with probability
zero. Since the measurement outcomes are presumed to be dictated by the
particular value of λ governing the physics of the system, we see that the set
of all possible λ or the system contains at least two disjoint sets - a set of
those values which yield outcome ∣χ⟩ ⟨χ∣ with certainty and those which yield
I − ∣χ⟩ ⟨χ∣ with certainty. (There could in general be values of λ which lead
to neither outcome with certainty). We denote by Sχ the subset of λ values
which lead to outcome χ with probability 1.

In a steering scenario, system B is described quantum mechanically by the
mixed state ρB. We know that this state can be steered to the eigenstates of
ρB, which are orthogonal. Since each of these eigenstates are associated with
disjoint values of λ, we see that, under a presumption of locality, ρB must be
associated with a probabilistic distribution over at least two different λ. We
denote the set of all λ underlying ρB by Sρ, and denote by ν(λ) any distribu-
tion over Sρ that is the ‘hidden variable’ description of B. The presumption
of locality also indicates that a measurement on system A cannot change
the ‘real state of affairs’ at B - in particular, therefore, it cannot change
the value of λ governing B, and thus ν(λ), which is used by the observer at
B to describe their system, is unaffected by the measurement performed at
A. For simplicity, from here on we limit ourselves to the case where ρB is
two-dimensional, and further we will take ρB = I/2. that is, the maximally
mixed state.

Let us first formalize the reasoning of Schrödinger and Einstein, which yields
a simple argument against local hidden variables if pure quantum states are
‘state of reality’. More precisely, we examine the possibility that pure states
are ontic - they correspond to a definite value of λ, while mixed quantum
states are epistemic - they correspond to a distribution over some λ. Thus,
in the ontic view, the state ∣x⟩ actually corresponds to some specific value
λx ∈ Sx, we therefore associate ∣x⟩ with a delta function distribution δ(λx)
over the hidden variables. We need only consider the case where steering is
performed either to a pair of orthogonal states ∣x⟩ , ∣X⟩ or to another pair of
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orthogonal states ∣y⟩ , ∣Y ⟩, with 0 < ∣ ⟨x ∣ y⟩ ∣2 < 1. That is,

ρB = 1
2 ∣x⟩ ⟨x∣ + 1

2 ∣X⟩ ⟨X ∣ = 1
2 ∣y⟩ ⟨y∣ + 1

2 ∣Y ⟩ ⟨Y ∣
Locality ensures that SρB = Sx∪SX = Sy∪SY . (Thus all values of λ ∈ Sρ would
yield one of the measurement outcomes ∣x⟩ ⟨x∣ , ∣X⟩ ⟨X ∣ , ∣y⟩ ⟨y∣, or ∣Y ⟩ ⟨Y ∣ with
certainty.) However, the crucial use of locality is to enforce preparation
non-contextuality [3]. That is, regardless of questions of locality, in order
for an ontic interpretation of pure states to be consistent, it is necessary
that two different preparation procedures leading to the same mixed state
are actually described by different distributions over the hidden variables.
For example, in this case, one needs that 1

2δ(λx) + 1
2δ(λX) = ν1(λ), while

1
2δ(λy) + 1

2δ(λY ) = ν2(λ), where the two distributions ν1(λ), ν2(λ) are both
valid hidden variable descriptions of ρB. This requirement shows that the
procedure for preparing ρB is necessarily contextual in such an interpreta-
tion. In the steering scenario, the initial distribution ν(λ) s unaffected by
the measurement at A. Hence the role of locality is to enforce ν1 = ν2, which
then implies

ν(λ) = 1
2δ(λx) + 1

2δ(λX) = 1
2δ(λy) + 1

2δ(λY )
Such a description is inconsistent, by virtue of the fact that within the ontic
view we necessarily have λx ≠ λX ≠ λy ≠ λY . Such an argument contains the
essence of what disturbed Einstein and Schrödinger, in a slightly complicated
form.

If pure quantum states are epistemic, however, we must go a little further in
order to rule out local hidden variable theories. Under the epistemic view,
the process of steering is simply reflects the change in information that the
observer holding system A has about the system B, based upon their mea-
surement outcome on system A. The particular correlation between A and
B is presumed known of course. As we have seen, steering appears in some
form both classically and quassically, which are local physical descriptions.
Quassically we even obtain steering to multiple different pure state decom-
positions. However, the argument below shows that quassically we cannot
simulate all such steering scenarios.

Let us use the notation that x(λ) denotes the distribution over Sx correspond-
ing to the state ∣x⟩. As mentioned, locality ensures that the distribution ν(λ)
is not affected by the measurement at A. Clearly we must have

ν(λ) = 1
2x(λ) + 1

2X(λ) = 1
2y(λ) + 1

2Y (λ) (1)
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Normalization relations of the form ∫Sx
dλx(λ) must be satisfied. The distri-

butions x(λ), y(λ) cannot be disjoint (since if Sy ⊂ SX then the probability of
obtaining an outcome ∣x⟩ ⟨x∣ when a system is in the state ∣y⟩ would be zero).
That is, there is an overlap between the regions Sx and Sy, which we denote
S1. Note that values of λ in this region yield measurement outcomes ∣x⟩ ⟨x∣
and ∣y⟩ ⟨y∣ with certainty - the nonorthogonality of ∣x⟩ , ∣y⟩ is reflected in the
fact that the distribution y(λ) only partially overlaps Sx. More precisely, in
order to conform with the predictions of QM, we must have that

∫
Sx

dλy(λ) = ∫
S1

dλy(λ) = ∣ ⟨x ∣ y⟩ ∣2 ≡ α (2)

In fact there are 4 disjoint regions of the λ-space to consider: S1 ≡ SX ⊂ Sy,
S2 ≡ Sx ⊂ SY , S3 ≡ SX ⊂ Sy, S4 ≡ SX ⊂ SY . We will use the notation that

xj ≡ ∫
Sj

dλx(λ) , j = 1, ...,4

and so on.

Clearly, by integrating (1) over the appropriate regions, we have the following
constraints:

νj = 1
2xj + 1

2Xj = 1
2yj + 1

2Yj , j = 1, ...,4 (3)

From equations of the form (2) we obtain

x1 = y1 =X4 = Y4 = α

x2 = y3 =X3 = Y2 = 1 − α
with all other values equal to 0. Thus, by (3), ν1 = ν4 = α/2, while ν2 = ν3 =
(1 − α)/2.

In order to obtain a contradiction, we need to consider a third pair of or-
thogonal states ∣z⟩ , ∣Z⟩ which, by the steering theorem, can also be steered
to via a measurement on A. For simplicity, we presume that the state ∣z⟩
‘bisects’ (has equal overlap with) the states ∣x⟩ , ∣y⟩. Thus

∣ ⟨z ∣x⟩ ∣2 = ∣ ⟨z ∣ y⟩ ∣2 = ∣ ⟨Z ∣X⟩ ∣2 = ∣ ⟨Z ∣Y ⟩ ∣2 ≡ β = 1
2(1 +

√
α)

the last term being the quantum mechanical prediction. From this we deduce
that

z1 + z2 = β = z1 + z3 , z3 + z4 = 1 − β = z2 + z4 (4)
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Z3 +Z4 = β = Z2 +Z4 , Z1 +Z2 = 1 − β = Z1 +Z3 (5)

Clearly z2 = z3 and Z2 = Z3. We must also have

νj = 1
2zj + 1

2Zj , j = 1, ...,4

There is no way to satisfy all these equations, subject to the necessary re-
quirement zj, Zj ≥ 0. For example, an independent set of the above equations
is

z1 + z2 = Z2 +Z4 = β (6)

z2 + z4 = Z1 +Z2 = 1 − β (7)

z1 +Z1 = α (8)

From these we get

Z1 = α − z1 = α − (β − z2) = α − β + (1 − β − z4) = 1 − 2β + α − z4

which, using β = 1
2(1+

√
α), gives Z1 = α−

√
α−z4. This is manifestly negative

for any 0 ≤ α, z4 ≤ 1. This completes the demonstration of incompatibility
between local realism and QM.

Although this proof is algebraic and thus reminiscent of GHZ type proofs
against local realism, it is in fact more or less equivalent to Mermin?s expo-
sition of Bell inequalities in [4].
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