
The phenomenon of state reduction

P. Háj́ıček
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Abstract

The standard quantum theory leaves open where, when and under which
objective conditions state reductions occur. Three of the recently published
ideas to complete the theory are developed and improved. First, the dis-
turbance of measurement due to identical particles in the environment can
be avoided if the meters do not react to states of the environment particles
but do react to the prepared states of the registered particle. Such meters
are mathematically described by the so-called truncated positive operator
valued measures. The difference between the states of the registered parti-
cles and the states from the environment is mathematically described by the
so-called separation status. Second, the separation status is refined from a
domain of space to a domain of space, momentum and energy. Third, start-
ing from the previously introduced distinction between ancillas, screens and
detectors, further study of experiments suggests the conjecture that a loss
of the separation status is the objective condition for the occurrence of the
a state reduction. The conjecture is falsifiable and a test is suggested using
superconductor currents.

1 Introduction

It is well known that the quantum theory of measurement is in an unsatisfac-
tory state [1, 2]. For example, the ideas of quantum decoherence theory [3]
have brought some progress but they do not solve the problem of quantum
measurement without any additional assumptions, e.g., the Everett interpre-
tation [4, 5, 6].

A measurement on microscopic systems can be split into preparation and
registration. Registration devices are called meters. The available empiri-
cal facts and the spirit of quantum mechanics suggest that the process of
registration has the following fascinating properties:

1. Registered value r is in general only created by the interaction of the
object system with the meter during the registration. Unlike the mea-
surement in a classical theory, registrations do not reveal already exist-
ing values. An important aspect of the creation is a state reduction1.

1The creation is a hypothesis that is neither disproved nor generally accepted.



2. As a rule, repeated experiments give different outcomes r from a well-
defined set of possible alternatives R. Each outcome is then created
with probability Pr such that ∑r∈RPr = 1. The resulting randomness,
or the so-called QM indeterminism occurs only during registrations.
This is different from other quantum processes, which are governed by
Schrödinger equation in a deterministic way.

3. There are correlations between outcomes given by distant meters. As
the outcomes are only created by registrations, a spooky action at a
distance between the meters turns out to be necessary. Indeed, the
quantum formalism suggests that the correlations between the regis-
tered values are encoded in the states but the values themselves are not!
This is called QM non-locality or non-separability and it again seems
to appear only via registrations (e.g., Einstein-Podolski-Rosen experi-
ment [7] with two particles as well as non-locality in registrations of a
single particle [8]). There has been a lot of work on this feature since
the beginnings of quantum mechanics and it is strongly suggested by a
number of theoretical and experimental results: Contextuality [9, 10],
Bell inequalities [11], Hardy impossibilities [12], Greenberger-Horne-
Zeilinger equality [13], etc.

These properties are not logically self-contradictory. Moreover, they are
testable and have been confirmed by numerous experiments as well as the-
oretical analysis. For many physicists, however, they are unacceptable for
taste and traditional reasons. We just take them as “facts of life”. Neverthe-
less, they give us a strong motivation to focus research on the phenomenon
of registration.

In several recent papers [14]-[21], a reformulation of quantum mechanics was
proposed that was not radical but that made the theory easier to understand.
The present paper is a continuation of our work on quantum measurement
[16, 19, 20]. Our strategy is to observe carefully what happens in real ex-
periments and to formulate some general hypotheses, which have then an
empirical rather than a speculative character.

In [16] it has been shown that quantum mechanical theory implies a strong
disturbance of any registration that could be mathematically truly described
by a self-adjoint operator (such as position, momentum, energy, spin and
orbital angular momentum). The origin of the disturbance is the existence
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of systems of the same type as the registered system S in the world (not
just in a neighborhood of S). For example, according to the standard quan-
tum mechanics, such measurements on an electron are disturbed because of
the existence of other electrons. This theoretical observation clearly contra-
dicts the long and successful praxis of experimenting. The fact that such
disturbances do not occur in real measurements must then be understood as
a proof that the current theory of observables and registrations need some
corrections.

In [16, 19, 20], an attempt at a correction of measurement theory is described
that focuses on disturbances due to remote particles. For example, the reg-
istration of a spin operator of an electron prepared in our laboratory had to
be (theoretically) disturbed by an electron prepared in a distant laboratory.
The idea was that it is not the spin operator that is really measured, but a
different quantity that can be constructed from the spin operator by some
process of localization. Such constructs have been called D-local observables,
D being some region of space. However, in order that D-local observables be
measurable on, say, an electron, the electron must also be prepared in such a
way that the influence of all other electrons on the measurement apparatus
inside a region D of space is negligible (e.g., the wave functions of all these
electrons practically vanish in D). We said then that the electron has a sep-
aration status2 D. On such a basis, a whole general3 mathematical theory
has been constructed [20].

Another important fact is that a particle prepared with a certain local sepa-
ration status loses the status if it arrives in a region of space where its wave
function has a non-zero overlap with wave functions of other particles of the
same type. Then, the particle itself does not make sense as an individual
system in a prepared state because there are only (anti-)symmetrized states
of the whole system. We recognize and highlight such changes of separation
status as important changes in the physics of the studied systems. A change

2To prevent confusion, let us recall that the word “separation” has two very different
uses in the literature on quantum mechanics. First, it is the “quantum non-separability”,
as in point 3 above. Second, it is associated with the notion of the “cluster separability”
[22]. The “separation status” was developed in connection with the principle of cluster
separability [16].

3For example, we speak here about wave functions for the sake of simplicity, but wave
functions are not sufficiently general in two respects: they represent pure states and refer
to a particular frame, the Q-representation.
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of separation status can be understood as an objective fact: it can be ob-
served but is itself independent of any observer. Notice that the separation
status is a new property of a quantum system that is very different from all
other properties used by standard quantum mechanics such as states or val-
ues of observables in that it cannot be determined by the state of the system
alone.

A careful study of many real experiments in [19, 20] has shown that meters
contain macroscopic detectors and screens. Further observations show that
the registration processes include separation status losses in the detectors
and screens on the one hand and state reductions on the other. We have
therefore proposed a general rule that associates a definite state reduction to
a given process containing separation status losses. The rule is sufficiently
specific in the sense that the final state is uniquely determined. The hypoth-
esis is empirical in its nature: it is not derived by some theoretical procedure
but is postulated and justified by observations. It is sufficiently specific so
that it is testable and has some predictive power.

The resulting theory, which is described with many detail in [20], suggests
the way in which the quantum measurement theory could and ought to be
corrected. However, it represents an idealized model whose practical appli-
cations are limited. On the one hand, it only focuses on the space aspects of
quantum systems working exclusively with regions in the eigenspace of the
position operator and so violates the transformation symmetry of quantum
mechanics. On the other, the spatial separation status is rather difficult to
be prepared. We can, e.g., never achieve perfect vacuum in the cavities where
the object systems are moving.

One can wonder whether the separation of particles in the momentum space
could play a similar role as that in the position one studied in [20]. In fact,
it is straightforward to built up a mathematical formalism in the momentum
space that is completely analogous to the formalism in the position space. To
see the physical meaning of such a construction, imagine that the detector
used in an experiment has an energy threshold E0. Then the particles with
the kinetic energy lower than the threshold, including particles within the
detector itself, cannot influence the detector. It is easy to achieve momentum
separation status and, in fact, most measurements work exactly in this way.
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The main aim of the present paper is to introduce quantities that are better
suited to describe real experiments than the D-local observables and give a
new definition of separation status that seems to be more satisfactory than
the old one.

The plan of the paper is as follows. Section 2 gives a brief account of the
standard theory of quantum measurement that is being used today for study
of real experiments. This is a good starting point for our analysis. Section
3 contains a new discussion of the disturbance of registration due to iden-
tical particles. Section 4 introduces the truncated positive operator valued
measures (TPOVM) as the quantities describing real experiments. Section 5
defines the extent of a quantum system in a given state as some domain in
the space spanned by three space coordinates, three components of momen-
tum and total energy. The notion of extent is then used to define a new kind
of separation status. Section 6 recapitulates and reformulates some older
ideas using the new notion of separation status. First, ancillas, screens and
detectors are structure elements of a given meter and must be distinguished
from each other. Second, the reading of a meter is postulated to be a signal
from a detector. Third, detected systems lose their separation status within
screens and detectors. Fourth, the standard unitary evolution is corrected
by a specific new rule in the case that separation statuses are lost. Section 7
describes a simple model of the Stern-Gerlach measurement within our the-
ory illustrating how the new rule works. Section 8 shows that the new rule
suggests a specific direction of investigation in the field of experiments with
superconducting currents and that this investigation might suggest a test of
the rule. The last section gives a summary of the paper.

2 The standard theory of measurement

In this section, we give a short review of the standard theory of measurement
as it is employed in the analysis of many measurements today and as it is
described in, e.g., [5, 23, 24]. The emphasis is on being close to experiments
and on physical meaning rather than on mathematical formalism.

The standard theory splits a measurement process into three steps.

1. Initially, the object system S on which the measurement is to be done is
prepared in state TinS and the meter M, that is the aparatus performing
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the measurement, in state TinM. These two preparations are independent
so that the composite S +M is then in state TinS ⊗ TinM. TinS and TinM
are state operators (sometimes also called density matrices).

2. An interaction between S and M suitably entangles them. This can
be theoretically represented by unitary map U, called measurement
coupling, that defines the evolution of system S+M during a finite time
interval. Accordingly, at the end of the time interval, the composed
system is supposed to be in state

U(TinS ⊗TinM)U†

3. Finally, reading the meter gives some definite value r of the measured
quantity. If the same measurements are repeated many times indepen-
dently from each other, then all readings form a set, r ∈ R. R is not
necessarily the spectrum of an observable (s.a. operator), in particular,
it need not contain only real numbers (R need not be a subset of R).
The experience with such repeated measurements is that each reading
r ∈ R occurs with a definite probability, Pr.

One of the most important assumptions of the standard theory is that, after
the reading of the value r, the object system S is in a well-defined state,

ToutSr

called conditional or selective state. This is a generalization of Dirac’s pos-
tulate:

A measurement always causes a system to jump in an eigenstate
of the observed quantity.

Such a measurement is called projective and it is the particular case when
ToutSr = ∣r⟩ ⟨r∣ where ∣r⟩ is the eigenvector of a s.a. operator for a non-generated
eigenvalue r.

The average of all conditional states after registrations, a proper mixture (see,
e.g., [25], p. 101 and the discussion in [20]),

∑
r

PrT
out
Sr
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is called unconditional or non-selective state. It is described as follows:
“make measurements but ignore the results”. One also assumes that

∑
r

PrT
out
Sr = TrM (U(TinS ⊗TinM)U†)

where TrM denotes a partial trace defined by any orthonormal frame in the
Hilbert space of the meter.

In the standard theory, the reading is a mysterious procedure. If the meter is
considered as a quantum system then to observe it, another meter is needed,
to observe this, still another is and the resulting series of measurements is
called von-Neumann chain. At some (unknown) stage including the processes
in the mind (brain?) of observer, there is the so-called Heisenberg cut that
gives the definite value r. Moreover, the conditional state cannot, in general,
result by a unitary evolution. The transition

TrM (U(TinS ⊗TinM)U†) ↦ ToutSr

in each individual registration is called “the first kind of dynamics” [26] or
“state reduction” or “collapse of the wave function”. We will use the name
“state reduction”.

The state reduction is an empirical fact but its theory is incomplete. First,
the time and location of the Heisenberg cut is not known. Second, if there are
two different kinds of dynamics, there ought to be also objective conditions
under which each of them is applicable. At the present time, no such objective
conditions are known. For example, for the state reduction, the condition of
the presence of an observer is not objective and the condition that a quantum
system interacts with a macroscopic system is not necessary.

The standard theory describes a general measurement mathematically by two
quantities. The first is a state transformer Or. Or enables us to calculate
ToutSr from TinS by

ToutSr =
Or(TinS )

Tr(TinS )

Or is a so-called completely positive map that has the form [27]

Or(T) = ∑
k

OrkTO
†
rk (1)
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for any state operator T, where Ork are some operators satisfying

∑
rk

O†
rkOrk = 1

Equation (1) is called Kraus representation. A given state transformer Or
does not determine, via Eq. (1), the operators Ork uniquely.

The second quantity is an operator Er called effect giving the probability to
read value r by

Pr = Tr (Or(T
in
S )) = Tr (ErT

in
S )

The set {Er} of effects Er for all r ∈ R is called positive operator valued
measure (POVM). Every POVM satisfies two conditions: positivity,

Er ≥ 0

for all r ∈ R, and normalization,

∑
r∈R

Er = 1

One can show that Or determines the effect Er by

Er = ∑
k

O†
rkOrk

The definition of POVMs that is usually given is more general: E(X) is a
function on the Borel subsets X ⊂ R. The simplified formalism that we use
in the present paper can be easily generalized in this way.

In the standard theory, the state transformer of a given registration contains
all information that is necessary for further analysis and for classification
of measurements. Such a classification is given in [5], p. 35. Thus, the
formalism of the state transformers and POVMs can be considered as the core
of the standard theory. Notice that these quantities are independent of any
further assumptions about state reduction. In this way, the standard theory
can work in practice and ignore the incompleteness of the state reduction
theory.
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3 Disturbance by identical particles

Let us first briefly recall the argument of Ref. [16] about the disturbance of
registration due to identical particles. Consider two distant laboratories, A
and B, and suppose that each of them prepares an electron in states ψ(x⃗A)
and φ(x⃗B), respectively (we are leaving out the spin indices and we work
in Q-representation for the sake of simplicity). Then everyday experience
shows that A can do all manipulations and measurements on its electron
without finding any contradictions to the assumption that the state is ψ(x⃗A).
Analogous statements hold about B.

However, according to the standard quantum theory, the state of the two
particles must be

2−1/2(ψ(x⃗A)φ(x⃗B) − φ(x⃗A)ψ(x⃗B)) (2)

Suppose next that A makes a measurement of the position of the electron.
Standard quantum mechanics associates position observable with the multi-
plication operator x⃗A for the A electron and with a symmetrized multiplica-
tion operator

x⃗A + x⃗B (3)

for the two electrons because the meter cannot distinguish the contributions
of two identical particles from each other. Hence, the average of the mea-
surement results must be

∫
R
d3xA x⃗A∣ψ(x⃗A)∣

2 + ∫
R
d3xB x⃗B ∣φ(x⃗B)∣

2 (4)

which differs from what one would expect if the state of the electron were
just ψ(x⃗A), and the difference even increases with the distance of the labo-
ratories.

In this connection, the following question is often asked. Suppose we have
a system S composed from two subsystems S1 and S2 containing indistin-
guishable particles. Two methods of dealing with S can be imagined. First,
we use only states that are symmetric over all indistinguishable bosons and
antisymmetric over all indistinguishable fermions of S (exchange symmetry),
and use only operators of S that preserve the exchange symmetry of the
states. Second, for both states and operators of S, we use (tensor) products
ψ1ψ2 and a1a2 without symmetrizing and antisymmetrizing, where ψj and
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aj is a state and an operator of Sj. The question is, which method is correct
for the above problem?

However, if there really were two different methods that could deal with the
same system and that could give different results, then the theory would be
self-contradictory. To prevent that, a clear criterion ought to be stated de-
termining which of the two methods is to be applied to any given system.

We shall argue that there is no such dilemma: under certain conditions, call
them C, the two methods are equivalent (give the same averages). Consider
system S1 on which a measurement by a meter is done, its environment S2
(containing the meter) and the composite S = S1 +S2. Let condition C read:
The meter is such that it reacts to the prepared states of S1 but does not
react to the states of any particle of the same type as S1 in the environment
S2. If C is satisfied, both methods give the same results for the measured
average. At the same time, the registration is not disturbed by the particles
in the environment.

The meter can then be (at least approximately) described by a mathemat-
ical quantity {Er} of the following kind: {Er} is in every respect similar to
a POVM with the exception that all effects Er annihilate all states of the
particles in the environment S2 but some of the effects do not annihilate
the prepared states of S1. This is what we shall call “truncated POVM”.
Clearly, S1 must also have the following property: the states of S1 on the
one hand and the states of all particles in S2 that are indistinguishable from
S1 on the other must be sufficiently different. We shall try to formulate this
mathematically with the help of “separation status”.

Let us now return to the two experiments. Consider the same situation as in
Experiment 1 with meter M being a detector that registers the position x⃗A
of electron SA. That is, the outcome of any registration by M is a triple x⃗A
of coordinates with respect to some Cartesian frame chosen by laboratory A.

First, it is clear that the outcome of a possible registration by any real meter
cannot be any element of the coordinate space R3. For example, letM be a
2a×2a quadratic photographic plate positioned orthogonally to the x3 axis of
the frame at x3 = 0 so that the coordinates x1 and x2 inside the plate satisfy
−a < x1 < a and −a < x2 < a. Then the outcome of any registration must lie
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in the set
D = (−a, a) × (−a, a) × (−δ, δ)

for some δ > 0 that characterizes the width of the plate. This is only a small
subset of the spectrum R3 of the position operator x⃗.

Let us denote the spectral measure of x⃗ by Π[X] (Π is an orthogonal pro-
jection acting on the Hilbert space of S1 and X is a Borel subset of R3, see,
e.g., [28]). MeterM can measure only a small part of the spectrum, namely
D in such a way that it does not react to any state of Π[R3/D](H)4. Such
a state cannot excite the photo-plate so that a black point appears on it.
We could try to describe the meter mathematically by TPOVM with effects
{Π[X]∣X ⊂ D}.

Let us assume next that states prepared in laboratory B are very well ap-
proximated by elements of Π[R3/D](H) and that we use the method that
respects the full exchange symmetry. Then there will be no disturbance of
the registrations by M due to activity in laboratory B because the second
term in Equation (4) would vanish. The result,

∫
D
d3xA x⃗A∣ψ(x⃗A)∣

2

will then be the same as if we do not respect the exchange symmetry and
describe the state of the two electrons by tensor product ψ(x⃗A)φ(x⃗B) and
the registered operator by {Π[X]∣X ⊂ D}. The two methods yield the same
average and there is no dilemma.

What is the bearing of the above considerations on the theory of quantum ob-
servables? The standard quantum mechanics defines observables of a system
S as the self-adjoint operators on the Hilbert space of S. Some mathematical
physicists (e.g., Ludwig, Bush, Lahti and Mittelstaed) define observables as
POVMs. The spectral measures of s.a. operators are POVMs and in this
sense, the latter definition is a generalization of the former one.

Wiseman and Milburn [5] propose a different idea: On the one hand, self-
adjoint operators are general theoretical quantities used by the theory for
many different purposes, e.g., to describe the dynamics (Hamiltonian), as
elements of C∗-algebras to form a basic space of quantum mechanics, to

4The set difference A/B is defined by A/B = {x ∶ x in A and x not in B}.
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construct some POVMs, etc. They can be called observables, because their
eigenvalues can be measured. On the other hand, the structure of s.a. oper-
ators is too restricted so that they are not suitable to describe truly what is
measured in many genuine measurements. For that purpose, POVMs seem
to be more suitable and one can try to describe mathematically any given
registration apparatus by some POVM. This distinction between observables
and POVMs is helpful in practice. For example, one can then define a POVM
that measures an observable by the requirement that all its effects are func-
tions of the observable and one can give many examples of measurements
that are not of this kind [5], p. 38.

However, the example of the position operator above goes even further: Al-
though elements of its spectrum can, in principle, be measured, any real
registration apparatus can measure only a restricted part of the spectrum.
Hence, it may have a mathematical description that is even more precise
than a POVM.

4 Truncated POVMs

In the previous section, we have seen that real meters must be such that they
do not react to some states in the sense that the probability to register any
value on such a state is zero. Strictly speaking, a meter of this kind cannot
be described by any POVM because of the condition of normalization. In
the present section, we introduce new mathematical quantities that are more
suitable to describe meters.

Let us define truncated POVMs (TPOVMs) as follows. In general, any given
experiment Exp on system S using meterM works with a limited set TExp =

{T1,T2, ...,TK} of states in which S is prepared before registrations. We
assume that there is subspace HExp of Hilbert space H of S satisfying two
conditions. First,

Π[HExp]TΠ[HExp] = T (5)

for all T ∈ TExp, where Π[HExp] ∶ H ↦ HExp is an orthogonal projection.
Second, HExp is minimal, that is any subspace of H that satisfies (5) must
contain HExp. In fact, for most experiments, HExp is a finite-dimensional
subspace of H (many examples of finite-dimensional HExp’s can be found in
[5]).
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Definition 1 Any TPOVM associated with experiment Exp is a set {E′r} of
s.a. operators satisfying

E′r ≥ 0

for all r ∈ R and

∑
r

E′r = Π[HExp]

Example Let Er, r ∈ R, be POVM. Then,

E′r = Π[HExp]ErΠ[HExp] , r ∈ R

is a TPOVM.

We have the desired property: states T annihilated by Π[HExp] satisfy
Tr(TE′r) = 0 for any r Another example of a TPOVM is described in Sec. 7.

5 Separation status

The foregoing section introduced quantities that are not necessarily disturbed
by environmental particles during registrations. However, further conditions
must be satisfied in order that a registration is not disturbed.

First, we need some estimate of the regions in the coordinate, momentum and
energy spaces within which a system in a fixed state, on which no registration
is done, can relatively strongly influence the registration on other quantum
systems.

Definition 2 Let Sτ be a system of N particles of type τ in state T. Let ak
be an observable of the k-th particle. Let

ā = Tr(T
∑k ak
N

) (6)

and

∆a =

√

Tr(T
∑k(ak − ā)

2

N
) (7)

where ∑k ak and ∑k(ak− ā)
2 are symmetrized one-particle operators that pre-

serve the exchange symmetry of states.
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The extent Ext(T) of T is the domain of R7 defined by the Cartesian product
of intervals,

Ext(T) =
3

∏
i

(x̄i−∆xi, x̄i+∆xi)
3

∏
i

(p̄j −∆pj, p̄j +∆pj)(H̄−∆H, H̄+∆H) (8)

where x̄i and ∆xi, are determined by Equations (6) and (7) for ak = xik,
xik being the icomponent of the position operator, p̄j and ∆pj are similarly
determined by components of the momentum operator and H̄ and ∆H by the
Hamiltonian, of the k’s particle in Sτ .

For example, consider two bosons in state T = ∣Ψ⟩ ⟨Ψ∣, where

∣Ψ⟩ =
1

√
2
(∣ψ1⟩ ⊗ ∣φ2⟩ + ∣φ1⟩ ⊗ ∣ψ2⟩)

∣ψ⟩ and ∣φ⟩ are two orthogonal vector states in the common Hilbert space of
both bosons satisfying ⟨ψ ∣φ⟩ = 0 and the symbol ∣ψk⟩ means that the state
∣ψ⟩ is occupied by the k-th particle. For any observable a, a short calculation
gives

ā =
⟨ψ∣ a ∣ψ⟩ + ⟨φ∣ a ∣φ⟩

2

and

∆a =

√
1

2
(∆2

ψa +∆2
φa +

1

2
(⟨ψ∣ a ∣ψ⟩ − ⟨φ∣ a)2 ∣φ⟩) (9)

where
∆2
χa = ⟨χ∣ a2 ∣χ⟩ − ⟨χ∣ a ∣χ⟩

2
(10)

for any state χ. We can see that the extent includes not only the “a-sizes”
∆ψa of individual particles but also the “a-distances” ∣ ⟨ψ∣ a ∣ψ⟩ − ⟨φ∣ a∣ be-
tween different particles in Sτ .

Now, we can give a definition of the separation status:

Definition 3 Given a system S, let Sτ be the subsystem of S containing all
particles in S of type τ . Similarly, let Eτ be the subsystem of the environ-
ment of S that contains all particles of type τ and let TE be the state of the
environment. We say that S prepared in state T has a separation status if
the extents of Tτ and TEτ have empty intersection for all τ . Here,Tτ and TEτ
are partial traces of T and TE over all particles of the type different from τ .
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To give some physical interpretation to this formalism, consider meter M
that is able to register systems of the same type as S. Suppose that, in order
to be registered by M, S has to be at some time inside M and its kinetic
energy must lie in the interval (E0,∞) defined by threshold E0 of the meter.
Similarly, the momentum must have the direction in which S must arrive at
the meter in order to be registered. These are condition on the extent of Sτ
for all types τ .

We assume first: every measurement on a system S with no separation status
will be disturbed by particles in its neighborhood. Second, experiments on
S can be arranged so that they will be only negligibly disturbed by environ-
ment particles if S has a separation status. The TPOVM of the registration
will then practically not react to states with disjoint extent.

Separation status has been defined differently in [16]: first, as operators ak,
just the components of the position operators were considered and second,
supports of the wave function or generalization of support to any state op-
erator in the position representation were used to define the extents. Such
definition is useful only in special cases because first, the volumes where the
particles are prepared have only an imperfect vacuum and there can still be
many particles of the same type there and second, most wave functions have
unbounded support. Definition 3 is free from these flaws.

We can interpret what has been said as yet as follows. Standard quantum
mechanics as it is usually presented seems incomplete:

1. It admits only two separation statuses for any system S:

(a) S is isolated. Then all states of S would have separation status
and all registrations could be described by POVMs. But this is
self-contradictory because S cannot be isolated if it interacts with
a meter.

(b) S is a member of a larger system containing particles identical to
S. Then there are no individual physical states and observables
for S.

2. It ignores the existence of separation-status changes.

Indeed, the separation status of a system S depends on the state of S, and
the state changes with time (in the Schrödinger picture, but all definitions
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can be transformed to the Heisenberg picture). Separation-status changes
have two important features:

1. They are objective phenomena that happen independently of any ob-
server, and can be distinguished from other quantum mechanical pro-
cesses.

2. Losses of separation status seem to be associated with state reductions.
This gives us some hope that state reductions would indeed occur only
if some objective conditions were satisfied.

6 Theory of meter reading

Let us now explain in more detail how registered systems can lose their sepa-
ration status in meters and how this can be associated with state reduction.
To this aim, we must refine a bit the language used for the description of
meters. The words that name parts or structural elements of meters will be
field, screen, ancilla and detector. It is clear what field and screen is but an-
cillas and detectors will have slightly different meaning from that of common
use. In many modern experiments, in particular in non-demolition and weak
measurements, but not only in these, the following idea is employed. The
object system S interacts first with a quantum system A that is prepared in
a suitable state. After S and A become entangled, A is subject to further
registration and, in this way, some information on S is obtained. Subsequent
measurements on S can but need not be made. The state of S is influenced
by the registration just because of its entanglement with A. The auxiliary
system A is usually called ancilla.

It seems, however, that any registration on microscopic systems has to use
detectors in order to make features of microscopic systems visible to humans.
Detector is a macroscopic system containing active volume D and signal col-
lector C in thermodynamic state of metastable equilibrium. Notice that the
active volume is a physical system, not just a volume of space. Interaction of
the detected systems with D triggers a relaxation process leading to macro-
scopic changes in the detector that are called detector signals. For the theory
of detectors, see, e.g., [29, 30]. Thus, our notion of detector is less general
while that of ancilla is more general than what is often assumed.
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For example, consider a ionisation gas chamber that detects a particle S so
that S first enters the active volume D of the chamber and then S can leave
D again and be subject to further registrations. When in D, S interacts
with several gas atoms that become ionized. The microscopic subsystem of
freed electrons can also be viewed as an ancilla A with an initial separation
status defined by energy, the ancilla electrons having positive energy while
the other electrons of D are bound and have negative energy. A “is detected”
subsequently by the rest of the detector, that is, A interacts with D and C
and is involved in a dissipative process in which the initial separation status
is lost.

According to the above assumption, measurements on ancillas need detec-
tors. Thus we are lead to the following hypothesis [16]:

Pointer Hypothesis Any meter for microsystems must contain at least one
detector and every reading of the meter can be identified with a signal from
a detector.

This assumption makes the reading of meters less mysterious.

In the above example of ionization chamber, the state of the ancilla that is
prepared by the interaction with the object system has, initially, a separation
status: it can be distinguished from other systems of atoms within D and,
therefore, registered without disturbance by other particles. However, in the
process of interaction with D and C and the relaxation process, its energy is
dissipated and its position is smeared so that it loses its separation status.
We assume next:

Active-Volume Hypothesis Active volume D of the detector detecting sys-
tem S ′ contains many particles in common with S ′. The state of S ′ +D then
dissipates so that S ′ loses its separation status.

Thermodynamic relaxation is necessary to accomplish the loss. S ′ might be
the objects system or an ancilla of the original experiment.

Finally, we propose the following assumption:

Separation Status Hypothesis Let the Schrödinger equation for the com-
posite S +M leads to a linear superposition of alternative evolutions such
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that some of the alternatives contain losses of separation status of the object
system or ancilla(s). Then, there is a state reduction of the linear superpo-
sition to the proper mixture of the alternatives.

Separation Status Hypothesis can be considered as a dynamical law in the
sense that it determines the correction to unitary evolution uniquely. This
has been shown in [19, 20] for a large class of scattering and registration
processes. That is why the law can be viewed as an empirical rule. However,
there is as yet no proof that the class contains all conceivable dynamical pro-
cesses: there could be processes to which the rule either fails to be applicable
or to which it is applicable but gives wrong results.

Some more research is necessary.

The three Hypotheses form a basis of our theory of measurement. They gen-
eralize some empirical experience. Moreover, they are rather specific and,
therefore, testable. In fact, they cannot be disproved by purely logical argu-
ment but rather by an experimental counterexample. For the same reason,
they also show a specific direction in which experiments are to be proposed
and analyzed: if there is a state reduction, does then a loss of separation
status take part in the process? What system loses its status? How the loss
of the status can lead to state reduction?

In fact, our theory remains rather phenomenological with respect to the last
question in that it suggests no detailed model of the way from a separation
status change to a state reduction. Such a model would require some new
physics and we believe that hints of what the new physics can be will come
from attempts to answer the above questions for suitable experiments.

7 Stern-Gerlach story retold

In this section, we shall modify the textbook description (e.g., [22], p. 14) of
the Stern-Gerlach experiment. In this way, the above ideas can be explained
and illustrated.

A silver atom consists of 47 protons and 61 neutrons in the nucleus and of
47 electrons around it, but we consider only its mass-center and spin degrees
of freedom and denote the system with these degrees of freedom by S. Let x⃗
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be its position and p⃗ its momentum and Sz the z-component of its spin with
eigenvectors ∣j⟩ and eigenvalues hh̵/2, where j = ±1.

Let M be a Stern-Gerlach apparatus with an inhomogeneous magnetic field
in a region D that splits different z-components of spin of a silver atom
arriving in D with a momentum in a suitable direction. Let a photo-emulsion
film with energy threshold E0 be placed orthogonally to the split beam. The
emulsion is the active volume D′ ofM and it may be also the signal collector
if the hit emulsion grains can be made directly visible.

First, let S be prepared at time t1 in a definite spin-component state

∣p⃗,∆p⃗⟩ ⊗ ∣j⟩ (11)

where ∣p⃗,∆p⃗⟩ is a Gaussian wave packet so that S can be registered by M
within some time interval (t1, t2). Let state (9) have a separation status at
t1 and D′ is in initial metastable state TM(t1) at t1.

Interaction of S withM is described by measurement coupling U (see Section
2). The time evolution within (t1, t2) is:

UNΠ(∣p⃗,∆p⃗⟩ ⟨p⃗,∆p⃗∣ ⊗ ∣j⟩ ⟨j∣ ⊗TM(t1)ΠU† = Tj(t2)

where Π is antisymmetrization on the Hilbert space of silver atom part of
S +D′ and N is a normalization factor because Π does not preserve normal-
ization. States Tj(t2) are determined by these conditions.

This evolution includes a thermodynamic relaxation of D+S ′. States Tj(t2)
describe subsystem S that has lost its separation status. Then, individual
states of S do not make sense: neither the conditional state nor the state
transformer exist for S. (These notions are, in fact, applicable only for some
parts of some measurements with ancillas.)

State Tj(t2) also describes a detector signal. The signals will be concentrated
within one of two strips on the film, each strip corresponding to one value of
j. We make the following assumption. The strips lie in two space regions D′

1

and D′
2 that are sufficiently separated so that the extents of the silver atom

subsystems within them do not overlap. Then, the two possible separation
status losses can be distinguished. Although there is only one separation
status, losses of separation status may differ from each other.
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Suppose next that the initial state of S at t1 is

∣p⃗,∆p⃗⟩ (∑
j

cj ∣j⟩)

with

∑
j

∣cj ∣
2 = 1

As it is linear, unitary evolution U gives

NUΠ [∣p⃗,∆p⃗⟩ ⟨p⃗,∆p⃗∣ ⊗ (∑
j

cj ∣j⟩)(∑
j′
cj′ ⟨j

′∣) ⊗TM(t1)]ΠU†

= ∑
jj′
cjc

∗
j′Tjj′(t2)

a quadratic form in {cj} ∈ C2. Coefficients Tjj′(t2) of the form are operators
on the Hilbert space of S +D.

The operator coefficients are state operators only for j′ = j. From the linearity
of U, it further follows that

Tjj(t2) = Tj(t2)

Now we postulate the following correction to the Schrödinger equation:

1. The loss of separation status of S disturbs the standard quantum evo-
lution so that, instead of

∑
jj′
cjc

∗
j′Tjj′(t2)

state

∑
j

∣cj ∣
2Tj(t2)

results.

2. States Tj(t2) are uniquely determined by the experimental arrange-
ment: the measurement coupling and the losses of separation status in
the meter.
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3. The sum is not only a convex combination but also a proper mixture
of the signal states Tj(t2). That is, the system S +M is always in
one particular state Tj(t2) after each individual registration and the
probability for that is ∣cj ∣2.

The described model is simple because the silver atoms are both the object
systems and components of the detector. If the detector contained no silver,
we would have to insert an intermediate step suggested by the example of a
ionization gas chamber in Section 6.

Stern-Gerlach experiment measures values of a truncated POVM that consist
of two effects,

Ej = ∣p⃗,∆p⃗⟩ ⟨p⃗,∆p⃗∣ ⊗ ∣j⟩ ⟨j∣

where j = ±1. Clearly, the set {Ej} lives on a two-dimensional subspace HExp

of the Hilbert space of the system S that is defined by the projection

Π[HExp] = ∣p⃗,∆p⃗⟩ ⟨p⃗,∆p⃗∣

8 Experiments with superconductor currents

It is not clear whether our theory is applicable to experiments with quantum
systems that are not microscopic such as Bose-Einstein condensates (BEC)
(see, e.g., Pointer Hypothesis). However, even an observation “by naked eye”
of the fluid helium in a glass vessel needs photons that are scattered off the
helium. Thus, we may need microsystems in order to observe properties of
quantum systems that are not microscopic. Then, our theory can be appli-
cable to the microsystems.

Let us briefly describe a possible instance of experiments that have not been
analyzed in the way proposed at the end of Section 6 and where such an
analysis could either disprove our theory or give some new insight on the
nature of state reduction.

Consider a single Josephson junction SQUID ring [31], that is a superconduct-
ing ring interrupted by transversal layers of oxide which allows the electrons
to pass through by tunneling. A quantum model of such a device, based on a
number of simplifications and assumptions, which we call “Quantum model
of superconductor currents” (QMSC) can be constructed. We shall not go
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into details of QMSC, referring interested reader to [31] and only list the
following properties.

First, QMSC is a quantum system with one degree of freedom which is chosen
to be the magnetic flux through the ring created by current of the BEC of
the Cooper pairs in the superconductor. Second, QMSC has a Hamiltonian
dependent on the external classical magnetic field through the ring. Third,
the Hamiltonian has two or more metastable energy levels if the external
magnetic flux is chosen properly. Finally, the levels are separated by a po-
tential barrier.

The two possible quantum states create two possible quantum magnetic
fluxes through the ring that are added to the external flux. The quantum
fluxes can be sufficiently strong to be considered macroscopically distinct so
that they could be distinguished by “naked eye”, or by a “tiny magnetic
needle” [32,6].

The original aim was to prove or disprove that linear superposition of macro-
scopically distinct states are possible. The hope was that, by a suitable ar-
rangement of the SQUID experiment, one can prepare a state of the QMSC
that is a linear superposition of the two metastable states. Some measure-
ments were proposed that would prove the existence of the linear superposi-
tion.

The side aspect of such measurements important for us is that the measure-
ments are supposed to be usual quantum measurements inducing a collapse
of the wave function. In this case, it will be the collapse to one of the lin-
ear superposition components. Now, if there is such a collapse, where is the
separation status change that would be necessary if our theory were true?
This is definitely a bigger and more specific problem that our theory adds to
the difficulty mentioned in [32, 6] of how the tiny needle can influence the
macroscopic magnetic field so that it could change appreciably.

However, the notion of a tiny needle occurs only in thought experiments that
are based on QMSC. If the real experiments are studied, one finds that they
are organized along completely different lines [33, 34]. Such measurements
can be done in a more precise way and still confirm the existence of linear
superposition but they have less clear results about the wave function col-
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lapse. Let us look at some details.

The measurements [33, 34] are made spectroscopically. A microwave radia-
tion is applied to the superconductors and one looks for a resonance at the
frequency of the energy difference between the metastable states. The en-
ergy that the radiation imparts to the superconducting device is smaller than
the height of the potential barrier between the metastable states, hence it
requires the tunneling between them and this in turn requires a linear super-
position of the states.

Then, however, a different measurement structure emerges: the registered
system is a photon rather than the BEC and the measurement apparatus
seems to use (a part of) the superconductor device rather than any tiny nee-
dle. The most important result for us is that the observed resonance lines
show an appreciable width. This is interpreted as a dissipation effect that oc-
curs somewhere within the superconducting device. However, the dissipation
is not well understood, in particular, it does not occur within the framework
of QMSC [31].

Thus, the new rules of Section 6 suggest a new direction of investigation that
concentrates on the dissipation effect. Indeed, some dissipation and some
metastable states are postulated by our theory of measurement. The dissi-
pation may take part within a definite subsystem of the apparatus and one
can then ask whether a loss of separation status occurs there, what system
loses its status and how the status loss is associated with any state reduction.
One could also try to suggest another experimental setup that were better
adapted to the task of answering these questions.

9 Conclusion

We have shown that the disturbance due to environmental particles makes
the experiments that measure any “whole” POVM impossible. In particular,
there is no meter that would measure the whole spectrum of s.a. operators
such as position, momentum, spin, angular momentum or energy.

The explanation of why real measurements do not seem to be disturbed is,
first, that different quantities than POVMs are registered. As such quan-
tities, we have proposed TPOVMs. Second, the preparations of the object
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systems satisfy an additional condition that is usually not mentioned. To
describe the condition, the notion of separation status has been defined in
[16]. Here, we have modified the notion so that some problems with the
original definition disappear.

The next crucial observation is that the roles of ancilla and detector in reg-
istrations of microsystems must be distinguished from each other. We have
then conjectured that every meter contains at least one detector and meter
readings are always signals of detectors. Moreover, separation statuses must
be lost in detectors.

Thus, our theory of measurement give the preparation and registration proce-
dures new importance, even stronger than that of Copenhagen interpretation:
they must include changes of separation status. Finally, study of different
kinds of real experiments shows that the changes of separation status are
associated with state reductions.

What is called “collapse of wave function” could then be roughly explained as
the state degradation due to a loss of separation status of the object system
or an ancilla by a thermodynamic relaxation process in a detector. Hence,
the collapse occurs under specific objective conditions and its origin has a
definite place and time. In this way, the theory of state reduction can be
made more complete.

The Separation Status Hypothesis of Section 6 is our new dynamical law.
The correction to Schrödinger equation defined by it is uniquely determined
in a large class of scattering and registration processes [19, 20]. In particular,
there is no problem of preferred frame [3]. Work on extensions of the class
is in progress.

The hypotheses formulated in Section 6 are testable and have a non-trivial
predictive power. As a possible test, experiments with superconductor cur-
rents have been proposed.
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