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Abstract

We address the question of whether the quantum-mechanical wave function ¥ of a system
is uniquely determined by any complete description A of the system’s physical state. We
show that this is the case if the latter satisfies a notion of “free choice”. This notion requires
that certain experimental parameters, which according to quantum theory can be chosen
independently of other variables, retain this property in the presence of A. An implication
of this result is that, among all possible descriptions A of a system’s state compatible with

free choice, the wave function V¥ is as objective as A.
I. Introduction

The quantum-mechanical wave function, ¥, has a clear operational meaning,
specified by the Born rule [1]. Tt asserts that the outcome X of a measure-
ment, defined by a family of projectors {II,}, follows a distribution Py given
by

Px () = (V[1L, [¥)

and hence links the wave function U to observations. However, the link is
probabilistic; even if ¥ is known to arbitrary precision, we cannot in general
predict X with certainty.

In classical physics, such indeterministic predictions are always a sign of
incomplete knowledge.! This raises the question of whether the wave func-
tion U associated to a system corresponds to an objective property of the
system, or whether it should instead be interpreted subjectively, i.e., as a
representation of our (incomplete) knowledge about certain underlying ob-
jective attributes. Another alternative is to deny the existence of the latter,
i.e., to give up the idea of an underlying reality completely.

Despite its long history, no consensus about the interpretation of the wave
function has been reached. A subjective interpretation was, for instance, sup-
ported by the famous argument of Einstein, Podolsky and Rosen [2] (see also
[3]) and, more recently, by information-theoretic considerations [4-6]. The
opposite (objective) point of view was taken, for instance, by Schrodinger
(at least initially), von Neumann, Dirac, and Popper [7-9].

!For example, when we assign a probability distribution P to the outcomes of a die roll,
P is not an objective property but rather a representation of our incomplete knowledge.
Indeed, if we had complete knowledge, including for instance the precise movement of the
thrower’s hand, the outcome would be deterministic.



To turn this debate into a more technical question, one may consider the fol-
lowing gedankenexperiment: Assume you are provided with a set of variables
A that are intended to describe the physical state of a system. Suppose, fur-
thermore, that the set A is complete, i.e., there is nothing that can be added
to A to increase the accuracy of any predictions about the outcomes of mea-
surements on the system. If you were now asked to specify the wave function
U of the system, would your answer be unique?

If so, then ¥ is a function of the variables A and hence as objective as A.
The model defined by A would then be called W-ontic [10]. Conversely, the
existence of a complete set of variables A that does not determine the wave
function ¥ would mean that ¥ cannot be interpreted as an objective prop-
erty. A would then be called W-epistemic.?

In a seminal paper [14], Pusey, Barrett and Rudolph showed that any com-
plete model A is W-ontic if it satisfies an assumption, termed “preparation
independence”. It demands that A consists of separate variables for each sub-
system, e.g., A = (A4, Ap) for two subsystems S, and Sg, and that these are
statistically independent, i.e., Py, a, = Pr, X Pr,, whenever the joint wave
function ¥ of the total system has product form, i.e., V=V, ® VUp.

Here we show that the same conclusion can be reached without imposing any
internal structure on A. More precisely, we prove that ¥ is a function of any
complete set of variables that are compatible with a notion of “free choice”
(Corollary 1). This captures the idea that experimental parameters, e.g.,
which state to prepare or which measurement to carry out, can be chosen
independently of all other information (relevant to the experiment), except
for information that is created after the choice is made, e.g., measurement
outcomes. While this notion is implicit to quantum theory, we demand that
it also holds in the presence of A.3

The proof of our result is inspired by our earlier work [15] in which we ob-

2Note that the existence or non-existence of W-epistemic theories is also relevant in the
context of simulating quantum systems. Here A can be thought of as the internal state of
a computer performing the simulation, and one would ideally like that storing A requires
significantly fewer resources than would be required to store . However, a number of
existing results already cast doubt on this possibility (see, for example, [11713]).

3Free choice of certain variables is also implied by the preparation independence as-
sumption used in [14], as discussed below.



served that the wave function ¥ is uniquely determined by any complete
set of variables A, provided that W is itself complete (in the sense described
above). Furthermore, in another previous work [16], we showed that com-
pleteness of ¥ holds within any framework compatible with free choice, if
one makes the additional assumption that any quantum measurement on a
system corresponds to a unitary evolution of an extended system. Hence, in
this case, ¥ is determined by A [15]. The argument we provide in the present
work shows that this conclusion is true more generally, even if the unitarity
assumption does not hold.*

Figure 1: Experimental setup.

4Note, however, that the argument we give in this work doesn’t allow us to conclude
that ¥ is complete.



II. The Uniqueness Theorem

Our argument refers to an experimental setup where a particle emitted by a
source decays into two, each of which is directed towards one of two measure-
ment de- vices (see Fig. 1). The measurements that are performed depend

on parameters A and B, and their respective outcomes are denoted X and
Y.

Quantum theory allows us to make predictions about these outcomes based
on a description of the initial state of the system, the evolution it undergoes
and the measurement settings. For our purposes, we assume that the quan-
tum state of each particle emitted by the source is pure, and hence specified
by a wave function.? As we will consider different choices for this wave func-
tion, we model it as a random variable W that takes as values unit vectors
in a complex Hilbert space H. Furthermore, we take the decay to act like an
isometry, denoted U, from H to a product space Hs ® Hp. Finally, for any
choices a and b of the parameters A and B, the measurements are given by
families of projectors {I1}},cy on H4 and Hp, respectively. The Born rule,
applied to this setting, now asserts that the joint probability distribution of
X and Y, conditioned on the relevant parameters, is given by

Pxyapw(7,yla,b,1) = (¢ Ut @ HZ)U 1) (1)

To model the system’s “physical state”, we introduce an additional random
variable A. We do not impose any structure on A (in particular, A could be a
list of values). We will consider predictions Pxyjapa(z,yla,b,\) conditioned
on any particular value A of A, analogously to the predictions based on ¥
according to the Born rule (1).

To define the notions of free choice and completeness, as introduced infor-
mally in the introduction, we use the fact that any experiment takes place in
spacetime and therefore has a chronological structure.b For example, the mea-
surement setting A is chosen before the measurement outcome X is obtained.
This may be modeled mathematically by a preorder relation”, denoted ~, on
the relevant set of random variables. While our technical claim does not

SWe consider it uncontroversial that a mixed state can be thought of as a state of
knowledge.

In previous work we sometimes called this a causal order.

TA preorder relation is a binary relation that is reflexive and transitive.

4



depend on how the chronological structure is interpreted physically, it is in-
tuitive to imagine it being compatible with relativistic spacetime. In this
case, A ~ X would mean that the spacetime point where X is accessible lies
in the future light cone of the spacetime point where the choice A is made.

For our argument we consider the chronological structure defined by the
transitive completion of the relations

VoA, AwA, AwB, AwX , B~Y (2)
(cf. Fig. 2).
X Y
! !
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!
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Figure 2: Chronological structure.

This reflects, for instance, that W is chosen at the very beginning of the exper-
iment, and that A and B are chosen later, right before the two measurements
are carried out. Note, furthermore, that A » Y and B » X. With the afore-
mentioned interpretation of the relation in relativistic spacetime, this would
mean that the two measurements are carried out at spacelike separation.

Using the notion of a chronological structure, we can now specify mathemat-
ically what we mean by free choices and by completeness. We note that the
two definitions below should be understood as necessary (but not necessarily
sufficient) conditions characterizing these concepts. Since they appear in the



assumptions of our main theorem, our result also applies to any more re-
strictive definitions. We remark furthermore that the definitions are generic,
i.e., they can be applied to any set of variables equipped with a preorder
relation.®

Definition 1. When we say that a variable A is a free choice from a set A
(w.r.t. a chronological structure) this means that the support of P4 contains
A and that P4, = P4 wherde A; is the set of all random variables Z (within
the chronological structure) such that A » Z.

In other words, a choice A is free if it is uncorrelated with any other variables,
except those that lie in the future of A in the chronological structure. For a
further discussion and motivation of this notion we refer to Bell’s work [17]
as well as to [18].

Crucially, we note that Definition 1 is compatible with the usual understand-
ing of free choices within quantum theory. For example, if we consider our
experimental setup (cf. Fig. 1) in ordinary quantum theory (i.e., where there
is no A), the initial state ¥ as well as the measurement settings A and B can
be taken to be free choices w.r.t. ¥~ A, W~ B, A~ X, B ~Y (which is
the chronological structure defined by Eq. 2 with A removed).

Definition 2. When we say that a variable A is complete (w.r.t. a chrono-
logical structure) this means that?

Ppyia = Payjaa,

where A; and A denote the sets of random variables Z (within the chrono-
logical structure) such that A ~ Z and Z ~ A, respectively.

Completeness of A thus implies that predictions based on A about future
values Ay cannot be improved by taking into account additional information
A, available in the past.!® Recall that this is meant as a necessary criterion

8They are therefore different from notions used commonly in the context of Bell-type
experiments, such as parameter independence and outcome independence. These refer
explicitly to measurement choices and outcomes, whereas no such distinction is necessary
for the definitions used here.

9In other words, A; - A — Ay is a Markov chain.

10Using statistics terminology, one may also say that A is sufficient for the family of
models depending on A,.



for completeness and that our conclusions hold for any more restrictive defi-
nition. For example, one may replace the set A; by the set of all values that
are not in the past of A.

We are now ready to formulate our main result as a theorem. Note that, the

assumptions to the theorem as well as its claim correspond to properties of
the joint probability distribution of X, Y, A, B, ¥ and A.

Theorem 1. Let A and ¥ be random variables and assume that the support
of U contains two wave functions, ¥ and ', with | (|| < 1. If for any
isometry U and measurements {115}, and {I1%},, parameterized by a € A and
be B, there exist random variables A, B, X and Y such that

1. Pxy|apw satisfies the Born rule (1).
2. A and B are free choices from A and B, w.r.t. (2).
3. A is complete w.r.t. (2).

then there exists a subset L of the range of A such that Py (L) = 1 and
PA|\1,(£W’) =0.

The theorem asserts that, assuming validity of the Born rule and freedom of
choice, the values taken by any complete variable A are different for different
choices of the wave function W. This implies that ¥ is indeed a function of

A.

To formulate this implication as a technical statement, we consider an ar-
bitrary countable!! set S of wave functions such that |(¢|¢’)| < 1 for any
distinct elements 1,1’ € S.

Corollary 1. Let A and ¥ be random variables with V taking values from
the set S of wave functions. If the conditions of Theorem 1 are satisfied then
there exists a function f such that W= f(A) holds almost surely.

The proof of this corollary is given in Appendix A.

' The restriction to a countable set is due to our proof technique. We leave it as an
open problem to determine whether this restriction is necessary.
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II1. Proof of the Uniqueness Theorem

The argument relies on specific wave functions, which depend on parameters
d,k e N and £ € [0,1], with k < d. They are defined as unit vectors on the
product space Hq ® Hp, where H, and Hp are (d + 1)-dimensional Hilbert
spaces equipped with an orthonormal basis {] j)};.lzo,12

1 d-1

¢=ﬁ;{)lj)(jl (3)

, 1 K
o - ﬂ(s|o><0| UGl v §|d><d|) )

Lemma 1. For any 0 < « < 1 there exist k,d € N with k < d and £ € [0,1]
such that the vectors ¢ and ¢' defined by (3) and (4) have overlap (¢|¢') = a.

Proof. 1f a =0, set k =1,d =2 and £ = 0. Otherwise, set d > 1/(1 - a?),
k = [a2d] and that (¢|¢’) = a. Furthermore, the choice of d ensures that
a?d + 1 < d, which implies k < d.

Furthermore, for any n € N, we consider projective measurements {I12},cx,
and {II’},cx, on H4 and Hp, parameterized by a € A, = {0,2,4,....,2n - 2}
and b € B, = {1,3,5,....,2n — 1}, and with outcomes in X; = {0, ...,d}. For
x,y € {0,....,d — 1}, the projectors are defined in terms of the generalized
Pauli operator, Xy = Y1 1) (1 ® 1| (where @ denotes addition modulo d) by

11 = (Xa)2r[2) {a] (X)) 2 (5)
b R LA
Iy = (Xa)2n Jy) (y] (Xg)2n (6)
We also set 1% = I1% = |d) (d].

The outcomes X and Y will generally be correlated. To quantify these cor-

12We use here the abbreviation |5) |5) for |j) ® |5)



relations, we define!3

d-1
[md(}%¥Y14B) =2n-— }: f?)(}fp4l3(x,17€9]lO,QTL—-1)
z=0

d-1
- > Y PXY|AB(z,z|a,b)
ab x=0
la-b]=1

For the correlations predicted by the Born rule for the measurements {112} ,cx,
and {I1%},cx, applied to the state ¢ defined by (3), i.e.,

Pxyjap(2,yla,b) = (6113 @ 1T} |¢)
we find (see Appendix B)

2
I, a(Pxy|aB) < on (7)

The next lemma shows that I, 4 gives an upper bound on the distance of the
distribution Px|4a from a uniform distribution over {0,...,d-1}. The bound
holds for any random variable A, provided the joint distribution Pxyajan
satisfies certain conditions.

Lemma 2. Let Pxy Ap|Lambda be @ distribution that satisfies Pxajap = Pxaja,
Pyajap = Pyap and Pana = Pax Ppx Py with supp(Pa) 2 A, and supp(Pp) 2
B,,. Then

1] d
Pxaa(z|0,X) = p] < §In,d(PXY|AB)

d-1
f dPy(N) ),

z=0

The proof of this lemma is given in Appendix C. It generalizes an argument

described in [16], which is in turn based on work related to chained Bell
inequalities [19, 20] (see also [21, 22]).

We have now everything ready to prove the uniqueness theorem.

Proof of Theorem 1. Let a,7 € R such that e”a = (¢ |1¢'). Furthermore,
let k,d, & be as defined by Lemma 1, so that Braketi|y’ = a. Then there

13Note that the first sum corresponds to the probability that X @1 =Y, conditioned on
A=0and B=2n-1. The terms in the second sum can be interpreted analogously.
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exists an isometry U such that Uy = ¢ and U’ = e7¢’ (see Lemma 3 of
Appendix D). Now let n € N and let A, B, X and Y be random variables
that satisfy the three conditions of the theorem for the isometry U and for
the projective measurements defined by (5) and (6), which are parameterized
by a € A, and b € B, respectively. According to the Born rule (Condition
1), the distribution Pxy|apy = Pxyjapuw (-, |-+, %) conditioned on the choice
of initial state W =4 corresponds to the one considered in (7), i.e.,

2
T
I, 4(P < — 8

(Prviane) < o )
Note that

PapuPyajapy = Payapy = Papyav Py By

By a similar reasoning, we also have Pxajapwy = Pxajaw. The freedom of
choice condition also ensures that Papjw = PaxPpx Pyjg with supp(Pys) 2 A,
and supp(Pg) 2 B,,. We can thus apply Lemma 2 to give, with (8),

/ dPA(A>§

Considering only the term z = k (recall that k < d) and noting that the left
hand side does not depend on n, we have

f dPA(/\)jZi

(otherwise, by taking n sufficiently large, we will get a contradiction with
the above). Let £ be the set of all elements A from the range of A for
which Pxjaaw (%[0, A, 1)) is defined and equal to 1/a. The above implies that
Py (L) = 1. Furthermore, completeness of A (Condition 3) implies that
for any A € £ for which Pxjaaw (%[0, A, ") is defined

1|  dm?
Pxjanw (2|0, X, 9) - E| <Ton

1
Pxjanw ([0, A, ¢) - riln 0

1
Pxjanw (K]0, A, ¥") = Pxjaaw(k[0, N, ¢) = p

MIf H# has a larger dimension than H4 ® Hp (e.g., because H is infinite dimensional)
then we can consider an (infinite dimensional) extension of H g, keeping the same notation
for convenience.

10



Thus, using Pyjaw = Paje (Which is implied by the freedom of choice assump-
tion, Condition 2) and writing d, for the indicator function, we have

PXIAsz(k|07¢') = _/ dp/\l‘l’(/\W,)PXIAA‘I’(k|07 A7)
> [ 8dPaj (A[9") Pxjanw ([0, A, ¢)
= %Z f ocdPrw (Al") = éPA\Iwa) (9)

However, because the vector e?¢’ = Ut)’ has no overlap with |k) (because
k < d) and because the measurement {II2},.x, for a = 0 corresponds to
projectors along the {|z)}?_, basis, we have Pyay(k|0,7") = 0 by the Born
rule (Condition 1). Inserting this in (9) we conclude that Py (L[Y") =0. O

IV. Discussion

It is interesting to compare Theorem 1 to the result of [14], which we briefly
described in the introduction. The latter is based on a different experimental
setup, where n particles with wave functions Wy, ..., ¥, each chosen from a
set {1,1'}, are prepared independently at n remote locations. The n parti-
cles are then directed to a device where they undergo a joint measurement
with outcome Z.

The main result of [14] is that, for any variable A that satisfies certain as-
sumptions, the wave functions Wy, ..., ¥,, are determined by A. One of these
assumptions is that A consists of n parts, Aq,....,A,, one for each particle.
To state the other assumptions and compare them to ours, it is useful to
consider the chronological structure defined by the transitive completion of
the relations®

It is then easily verified that the assumptions of [14] imply the following:

1. Pyy,..w, satisfies the Born rule;

2. Ay, ..., A, are free choices from {¢,¢'} w.r.t. (10);

15Note that this chronological structure captures the aforementioned experimental setup.
In particular, we have ¥; + A; for i # j, reflecting the idea that the n particles are prepared
in separate isolated devices.

11



3. A is complete w.r.t. (1).

These conditions are essentially in one-to-one correspondence with the as-
sumptions of Theorem 1.16 The main difference thus concerns the modeling
of the physical state A, which in the approach of [14] is assumed to have an
internal structure. A main goal of the present work was to avoid using this
assumption (see also [23, 24] for alternative arguments).

We conclude by noting that the assumptions to Theorem 1 and Corollary 1
may be weakened. For example, the independence condition that is implied
by free choice may be replaced by a partial independence condition along the
lines considered in [25]. An analogous weakening was given in [26, 27| regard-
ing the argument of [14]. More generally, recall that all our assumptions are
properties of the probability distribution Pxyapwa. One may therefore re-
place them by relaxed properties that need only be satisfied for distributions
that are e-close (in total variation distance) to Pxyapwa. (For example, the
Born rule may only hold approximately.) It is relatively straightforward to
verify that the proof still goes through, leading to the claim that ¥ = f(A)
holds with probability at least 1 - ¢, with - 0 in the limit where £ — 0.

Nevertheless, none of the three assumptions of Theorem 1 can be dropped
without replacement. Indeed, without the Born rule, the wave function ¥
has no meaning and could be taken to be independent of the measurement
outcomes X. Furthermore, a recent impossibility result 28| implies that
the freedom of choice assumption cannot be omitted. It also implies that
the statement of Theorem 1 cannot hold for a setting with only one single
measurement. This means that there exist W-epistemic theories compatible
with the remaining assumptions. However, in this case, it is still possible
to exclude a certain subclass of such theories, called mazimally V-epistemic
theories [29] (see also [30]). Finally, completeness of A is necessary because,
without it, A could be set to a constant, in which case it clearly cannot
determine V.

16The choice of a measurement setting may be encoded into the state of an extra system
that is fed into a fixed measurement device. We hence argue that there is no conceptual
difference between the free choice of a state, as implied by the assumptions of [14] (in
particular, preparation independence), and the free choice of a measurement setting, as
assumed in Theorem 1.
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Appendix A: Proof of Corollary 1
For any distinct 1,9’ € S, let L, 4 be the set defined by Theorem 1, i.e.,

Prpw(Ly i) =1
Prp (Lyyr|") =0

and for any ¢ € S define the (countable) intersection Ly = Nyres\(w} Lyv'-
This satisfies

1 if o= o

0 otherwise

Prw (Ly(9') = {

(Here we have used that for any probability distribution P and for any events
L,L', P(L)=P(L") =1 implies that P(Ln L") = 1.) To define the function
f, we specify the inverse sets

fH () = ﬁw\( U Ew')

Pre\{y}

15



The function f is well defined on Uyes f~' (1) because, by construction, the
sets f~1(1) are disjoint for different ¢ € S. Furthermore, it follows from the
above that for any ¢ € S

Prw (f (W)1) =1

This implies that f(A) = ¥ holds with probability 1 conditioned on ¥ = ).
The assertion of the corollary then follows because this is true for any ¢ € §.0

Appendix B: Quantum correlations

The aim of this appendix is to derive the bound (7) used in the proof of the
uniqueness theorem.

Note that the state ¢, defined by (3), has support on H ® H, where H =
span{|0),[1),....,|d - 1)}. Since the projectors II5 and IT}, defined by (5) and
(6), for a € A, and b € B,, and for x,y € {0,....,d - 1} also act on H, we can
restrict to this subspace.

For j € {0,.....d -1} and k € {0,....,2n — 1} the projectors H;? are along the
vectors

k.
) = (Xa) " 15)
where X, denotes the generalized Pauli operator (defined in the main text).
To write these vectors out more explicitly, we consider the diagonal operator

d-1
Za= Y M 5) (]
=0
and the unitary

- = eQmjk/d
Ua = \/—Z 15) (Kl

k
These have the property that X, = UdZdUCJlr and hence it follows that (Xd) n -

k.
U, (Zd)zn UdT. Thus, we can write

1 _exp[zkw]

k 1
‘C )- E —exp[%(mﬁtkﬂn—l)] )
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for k # 0. Note that <§ﬂ§f,> = 0,4, implying that for each k, {H?}j is a
projective measurement on H.

Recall that the probability distribution in (7) is obtained from a measurement
of ¢ with respect to these projectors, i.e.,

Pyy|ap(z,yla, b) = [((¢z1{G]) 10} [

We are now going to show that

sin? Z

P b) = — 20 Bl
zl; XY|AB(=737$|CL7 ) 22 sinQQdLn (B1)
for |[a-b| =1, and
in221
ZPX)/MB(I .TEB1|0 2n — 1)_—2n (B2)
d? sin” 57—

For this it is useful to use the relation that for any operator C,
(1eC)p) = (CT ®1)¢)

where CT denotes the transpose of C' in the |i) basis. Thus, noting that
Ul =U,, we have

b

(S 16) = = el U (U2 Vale)
then using
(Uh? = % ; e 2miikem/d | (m, Z |K) (ke d|
jkm
we find o
_Za-b
((¢{c]) 19) d3/2 Ze_(a V= d?}/Q i—Z%(“‘b)
We can hence use |1 - e¥|? = 4sin2% to obtain
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from which (B1) follows. (B2) can be obtained by a similar argument. These
two expressions immediately imply
sin? Te-b) )

2 w(a-b)

I, a(Pxy|aB) = 2n (1 -
2dn

d? sin
Using #2 — 24/3 < sin®x < 22 for 0 <z < 1 this implies the bound (7).
Appendix C: Proof of Lemma 2

In the following we use the abbreviations Pxy|apx = Pxyjapa(-, |-+, A) and
Pxyiaxr = Pxvy|asa(:;-|a,b) for the distributions conditioned on A = A and

(A, B) = (a,b).

The inequality in Lemma 2 can be expressed in terms of the total variation
distance, defined by

D(Py,Qx) = 5 X IPx(x) - Qx(x)

as
d
/ AP Lambda(\) D(Pxiagr, 1/d) € JIna(Pxyian)

where 1/d denotes the uniform distribution over {0,....,d — 1}, and where
ap = 0. Furthermore, using

PXY|AB = fdﬂLambda()\)PXHAB)\

(which holds because Pyjap = Pp) and that I, 4 is a linear function, we have

]n,d(PXY|AB):fdHLambda()\)In,d(PXY\AB/\)

It therefore suffices to show that, for any A,

d
D(Pxjagr, 1/d) < Zln,d(PXYMB)\)

For this, we consider the distribution Pxgijqx, Which corresponds to the dis-
tribution of X if its values are shifted by one (modulo d). According to
Lemma 5 and using 3| £ | < ¢ we have

d
D(Pxjgor, 1/d) < ZD(PXGBH(;O)\; Pxlaor)
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The assertion then follows with

L a(Pxy|aB»)
=2n - ZPXY\aobox\(x7$ @ 1) - Z PXY|ab)\(x7x)

x,a,b
la—b|=1

> D(Pxatlagbors Priaghor) + . D(Pxjabr, Pyjabr)

a,b
|a—b|=1

> D(Pxe1aor, Pxjaor)

where we have set by = 2n — 1; the first inequality follows from Lemma 4; the
second is obtained with Pxjgy = Pxjex and Pyjgs = Pypa (which are implied
by the conditions stated in the lemma) as well as the triangle inequality for
D ('7 ) : O

Appendix D: Additional Lemmas

Lemma 3. For any unit vectors ,y' € Hy and ¢,¢' € Ha, where dimH; <
dimHy and (P |Y') = (@ | @), there exists an isometry U : Hy — Hy such that
Up=¢ and UY' = ¢'.

Proof. With a = (¢ ]9') = (¢|¢') and 5 = /1 — |a|?> we can write ¢’ = a)+ [t
and ¢’ = a¢ + Bot with unit vectors ! and ¢+ orthogonal to ¢ and ¢,
respectively. The isometry U can be taken as any that acts as |¢) (¢|+|o*) (¢4
on the subspace spanned by ¢ and ' ]

Lemma 4. For two random variables X and 'Y with joint distribution Pxy,
the total variation distance between the marginal distributions Px and Py
satisfies

D(PX,Py) <1- ZPX}/(J},I)

Proof. Consider Py = Pxy|x.y, the distribution of X and Y conditioned on
the event that X # Y, as well as Py, = Pxy|x-y so that

Pxy =p.Piy + (1 -p.)Pxy
where p, =1 -3, Pxy(x,x). The marginals also obey this relation, i.e.,

Py =p. Py + (1 -p.) Py
Py:p¢P;ﬁ+(1—p¢)P§
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Hence, since the total variation distance is convex,
D(Px,Py) <p:D(P%,Py)+ (1 -p.)D(Px, Py) < p-

where we have used the fact that the total variation distance is at most 1, as
well as D(Pg, Py) =0 in the last line. |

Lemma 5. The total variation distance between any probability distribution
with range {0,1,....,d = 1} and the uniform distribution over this set, 1/d, is

bounded by
d2

D(Px,1/d) < cli [Z] D(Pxe1,Px)

Proof. Using
1 d-1

P

i—0

1
Pxei = P
and the convexity of D, we find

1d—1 ld—l 1d—1
D(Px,1/d) = D(g ZPX,E ZPX@i) <7 > D(Px, Pxai)
<0 <0 iz0

Because
D(Pxs(i-1), Pxei) < D(Pxe1, Px)

for all i we have for i < d/2

D(Px, Pxgei) < D(Px, Pxe(i-1)) + D(Pxe(i-1), Pxe:)
= D(PXapXea(z‘—l)) + D(PX®1>PX)

Using this multiple times yields
D(Px, Pxei) <iD(Pxe1, Px)
Similarly, for i > d/2, we use

D(Px, Pxgei) < D(Px, Pxe(i+s1)) + D(Pxe(i+1), Pxe:)
= D(Px, Pxe(i+1)) + D(Pxe1, Px)

multiple times to yield

D(Px, Pxgi) < (d—=1)D(Pxe1, Px)
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Thus,

d-1

> D(Px, Pxai)

=0

ld/2] d-1
S(Zi+ (d—i))D(PXeal,PX)
20 i=|dfs)+1

q2

[ZJD(PXGBhPX)

Combining this with the above concludes the proof. O
Note that the bound of Lemma 5 is tight, as can be seen for d even and the

distribution Px = (2/d,2/d, ....,2/d,0,0,...), for which D(Px,1/d) = 1/2 and
D(Pxg1, Px) =2/d.
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