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Abstract

We show that the phenomenon of anomalous weak values is not limited to
quantum theory. In particular, we show that the same features occur in a
simple model of a coin subject to a form of classical backaction with pre- and
post-selection. This provides evidence that weak values are not inherently
quantum, but rather a purely statistical feature of pre- and post-selection
with disturbance.

In many quantum mechanical experiments, we observe a dissonance between
what actually happens and what ought to happen given naïve classical in-
tuition. For example, we would say that a particle cannot pass through a
potential barrier-it is not allowed classically. In a quantum mechanical exper-
iment the “particle” can “tunnel” through a potential barrier-and a paradox
is born. Most researchers spent the 20th century ignoring such paradoxes
(that is, “shutting up and calculating” [1]) while a smaller group tried to
understand these paradoxes [2-5] and put them to work [6].

The typical way experimentalists probe the quantum world is through mea-
suring the expectation value of an observable A. After many experimental
trials the expected value is

⟨A⟩ψ = ⟨ψ∣A ∣ψ⟩ (1)

where ∣ψ⟩ is the quantum state of the system under consideration. The mea-
surement of such an expected value allows us to demonstrate, for example,
that Bell’s inequalities [5] are violated. Thus measurement of the expected
value can have foundational significance.

Now, the potential values one can observe are limited to the eigenvalue range
of A. It was surprising, then, that Aharonov, Albert, and Vaidman [7]
claimed the opposite. In 1988, they proposed the weak value of an observable.
The weak value of A is defined as [7, 8]

aw =
⟨φ∣A ∣ψ⟩

⟨φ ∣ψ⟩
(2)

where ∣ψ⟩ and ∣φ⟩ re called pre- and post-selected states. Notice that when
⟨φ ∣ψ⟩ is close to zero, aw can lie far outside the range of eigenvalues of A
hence the title of [7]: “How the result of a measurement of a component of



the spin of a spin-1/2 particle can turn out to be 100”. When this is the case,
the weak value is termed anomalous.

Weak values are said to have both foundational and practical significance.
On one hand, they are claimed to solve quantum paradoxes [9], while on the
other, they are claimed to amplify small signals to enhance quantum metrol-
ogy [10] (but compare to [11-16]). One research program in the weak value
community is to examine a paradoxical quantum effect or experiment and
then calculate the weak value for that situation. Often the calculated weak
value is anomalous. From this we are sup- posed to conclude the paradox
is resolved (see, for example, [17] for a recent review). So it would further
seem, then, that anomalous weak values, if not the source of quantum mys-
teries, provide deep insight into finding it. Indeed, since their inception, weak
values have inspired deep thinking and debate about the interpretation and
foundational significance of weak values [18-23].

In this letter we provide a simple classical model which shows anomalous
weak values are not limited to quantum theory. In particular, we show the
same phenomenon manifests in even the simplest classical system: a coin.
This shows that the effect is an artifact of toying with classical statistics and
disturbance rather than a physically observable phenomenon.

Let us begin by defining the weak value as it was formally introduced before
casting it into a more general picture. We have a system with observable
A = ∑a a∣Keta ⟨a∣ and meter system with conjugate variables Q and P so
that [Q,P ] = i. The system and meter start in states ∣ψ⟩ and

∣Φ⟩ = frac1(2πσ2)1/4∫ dq′ e(−q
′2/4σ2) ∣q′⟩

interact via the Hamiltonian H = A ⊗ P , then are measured in the bases
{∣φk⟩} and {∣q⟩} where q ∈ [−∞,∞]. We are interested in the joint probability
distribution of this measurement:

Pr(q, φ∣ψ,Φ) = ∣⟨φ∣ ⟨q∣ e−ixH/h̵ ∣ψ⟩ ∣Φ⟩∣
2

where x is a coupling constant. In this case, it can be shown (as in, Chap.
16 of [9]), in the limit σ →∞ [24],

⟨φ∣ ⟨q∣ e−ixA⊗P /h̵ ∣ψ⟩ ∣Φ⟩ = ⟨φ ∣ψ⟩Φ(q − xaw) (3)
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where aw is the weak value given in (2) and, assuming aw is real [25], is the
average shift of the meter position given the states ∣ψ⟩ and ∣φ⟩. Consider
the following example. We take the system observable A = Z, the Pauli Z
operator, and pre- and post-selected states

∣ψ⟩ = cos
θ

2
∣+1⟩ + sin

θ

2
∣−1⟩ (4)

∣φ⟩ = cos
θ

2
∣+1⟩ − sin

θ

2
∣−1⟩ (5)

where ∣+1⟩ and ∣−1⟩ are the +1 and −1 eigenstates of Z, respectively. A short
calculation reveals

aw ==
1

cos θ
(6)

thus when θ ≈ 1.5608 we have aw = 100!. This is patently non-classical as the
states required to observe a value aw > 1, say, are in different bases. Next,
we will show how to obtain an anomalous weak value from a system-meter
picture and statistical conditioning.

The most general kind of measurement we can perform on a quantum system
is described by a set of Kraus operators and their corresponding positive
operator valued measure (POVM). To derive the Kraus operators for the
above situation we expand the unitary to first order in x:

U(x) = e−ixA⊗P /h̵ ≈ I⊗ I − ixA⊗ P

To this order in perturbation theory, the Kraus operators for a position
measurement on the meter are

Mq = ⟨q∣U(x) ∣Φ⟩ = I ⟨q ∣Φ⟩ − ixA ⟨q∣P ∣Φ⟩

Using

P = −ih̵
∂

∂q
and ∂ye

(−y2/4σ2) = (−y/42σ2)e(−y
2/4σ2)

the Kraus operator becomes

Mq = [I − q x
σ2
A]Φ(q) (7)
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As we have specialized to the case where A is a Pauli operator we can use
A† = A and A†A = I. The POVM elements are Eq = M †

qMq which to first
order in x are:

Eq = ∣Φ(q)∣2 [I − q x
σ2
A] (8)

where σ2 is the initial variance of the Gaussian meter state and x is the
coupling constant. If we course grain over the meter measurements so that
q ≤ 0 is identified as outcome “+1” and q > 0 is identified as the result “−1”,
then the effective POVM elements are

E+ = ∫

0

−∞
dq Eq and E− = ∫

∞

0
dq Eq (9)

performing the integral gives

E± =
1
2[I ± (2x/

√
2πσ2)A]

Collecting the constants we define λ ≡ 2x/
√

2πσ2 so that the POVM becomes

E± =
1

2
[I ± λA] (10)

As λ→ 0 the measurement approaches the trivial one, conveying no informa-
tion and leaving the post-measurement unaffected. Identical POVM elements
can be obtained from second order perturbation theory. For what follows we
find it convenient to introduce a classical random variable, s ∈ {±1} for the
sign of the outcome, then the POVM can be written as

E± =
1

2
[I + sλA] (11)

This POVM describes a weak measurement of the operator A in the state
∣ψ⟩. This can be seen from the probability of observing the outcome s

Pr(s∣ψ) =
1

2
(1 + sλ ⟨ψ∣A ∣ψ⟩) (12)

which is correlated with the expectation value of the operator A.

We now calculate the conditional expectation of the random variable s given
the pre- and post-selected states ∣ψ⟩ and ∣φ⟩ respectively

Es∣φ,ψ[s] = ∑
s=±1

s
Pr(s, φ∣ψ)
Pr(s∣ψ)

= ∑
s=±1

s
∣ ⟨φ∣Es ∣ψ⟩ ∣2

∣ ⟨φ ∣ψ⟩ ∣2
(13)

= ∑
s=±1

s

4

⟨φ∣ I + sλA ∣ψ⟩ ⟨ψ∣ I + sλA ∣φ⟩

∣ ⟨φ ∣ψ⟩ ∣2
(14)
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where Ex∣y[f(x)] denotes the conditional expectation of f(x) given y. This
result can also be arrived at using Bayes rule to determine Pr(s, φ∣ψ), which
is known as the “ABL rule” in quantum theory (after Aharonov, Bergmann,
and Lebowitz [26]). Expanding the numerator and neglecting the O(λ2) term
we arrive at

Es∣φ,ψ[s] = ∑
s=±1

s

4
(1 + 2sλ

⟨φ∣A ∣ψ⟩

⟨φ ∣ψ⟩
) (15)

= λ
⟨φ∣A ∣ψ⟩

⟨φ ∣ψ⟩
(16)

Thus the conditional expectation of s results in a quantity proportional to
the weak value. Since the constant of proportionality is λ, to arrive directly
at the weak value we consider the conditional expectation of the random
variable s/λ. Uisng this, we will show

Es∣φ,ψ [
s

λ
] →

⟨φ∣A ∣ψ⟩

⟨φ ∣ψ⟩
as λ→ 0

Using Eq. (16), we have

Es∣φ,ψ [
s

λ
] =

1

λ
Es∣φ,ψ[s] =

⟨φ∣A ∣ψ⟩

⟨φ ∣ψ⟩
+O(λ) (17)

Now we take a limit to remove the O(λ) term to arrive at exactly the weak
value [24]

aw = lim
λ→0

Es∣φ,ψ [
s

λ
] =

⟨φ∣A ∣ψ⟩

⟨φ ∣ψ⟩
(18)

To relate this to the meter picture note that s/λ =
√

2πσs/2x. Thus the limit
λ→ 0 is identical to σ →∞.

From Eq. (12) we can see that

⟨φ∣A ∣ψ⟩ = Es∣ψ [
s

λ
] = ∑

s

s

λ
Pr(s∣ψ) (19)

By the classical law of total expectation we have:

⟨φ∣A ∣ψ⟩ = Es∣ψ [
s

λ
] = Eφ∣ψ [Es∣φ,ψ [

s

λ
]] (20)
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From Eq. (18) we know in the limit λ → 0 we can replace Es∣ψ [ s
λ
] with the

weak value

⟨φ∣A ∣ψ⟩ → Eφ∣ψ [
⟨φ∣A ∣ψ⟩

⟨φ ∣ψ⟩
] as λ→ 0 (21)

So, the weak value arises close to the way it is often envisioned to-as a
condition expectation-but to define it properly, we need to include a renor-
malization by the weakness parameter λ.

Now we demonstrate that it is possible to find anomalous weak values for
pre- and post-selected states in the same basis provided there is classical
disturbance. In particular, we take A = Z, ∣ψ⟩ = ∣+1⟩ and ∣φ⟩ = ∣−1⟩. Using
the POVM effects in Eq. (10), the probability of the outcome of the weak
measurement is

Pr(s∣ψ = +1) =
1

2
(1 + sλ) (22)

Since the measurement is in the same basis as the state, the state is un-
changed and the final weak value will not be anomalous. Thus, we must
do something more. To simulate the disturbance, we now apply a bit-flip
channel which conditionally depends on the strength and outcome of the
weak measurement. This is reasonable as one would expect, from quantum
measurement theory, that the amount of disturbance should depend on the
strength of the measurement. After the channel, the state becomes

∣+1⟩ ⟨+1∣ ↦ (1 − p) ∣+1⟩ ⟨+1∣ + p ∣−1⟩ ⟨−1∣ (23)

where we set the probability of the bit-flip to be

p = 1 −
1 − cos θ

1 = sλ
(24)

and θ is a constant of our choosing. Since the probability, given s, of observing
∣−1⟩ in the final measurement is p, we have

Pr(s, φ∣ψ) = Pr(φ∣s,ψ)Pr(s∣ψ) =
p

2
(1 + sλ) (25)

=
1

2
(cos θ + sλ) (26)

Marginalizing over s, we obtain

Pr(φ∣ψ) = ∑
s=±1

Pr(s, φ∣ψ) = cos θ (27)
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We now have all the ingredients to calculate the weak value as defined in Eq.
(18):

aw = lim
λ→0

Es∣φ,ψ [
s

λ
] (28)

= lim
λ→0
∑
s=±1

s

λ

Pr(s, φ∣ψ)
Pr(φ∣ψ)

(29)

= lim
λ→0
∑
s=±1

s(cos θ + sλ)

2λ cos θ
(30)

=
1

cos θ
(31)

which is identical to the calculated weak value (6) using pre- and post-selected
states taken from differing bases. Since the state here remains in the Z basis
at all times, it is essentially classical. To make this point unequivocally clear,
we now give an explicitly classical protocol to realize anomalous weak values.

Our example revolves around a coin where the outcome “Heads” is associated
with the sign “+1” while “Tails” is associated with the sign “-1”. This allows
us to compare the analysis above for a quantum coin case (a qubit) and a
classical coin. As before we abstract the sign into a random variable s.

An efficient strong measurement of an unbiased coin after a flip will re-
sult in an observer measuring and reporting outcome s with probability
Pr(report s∣prepare s) = 1. A classical weak measurement of the sign of
a coin s ∈ {±1} means the observer did not properly ascertain if the coin was
heads or tails. Such a measurement might arise from an observer not having
the time to properly examine the coin or if there was oil on their glasses.
We model this by introducing a probability Pr(report s∣prepare s) = 1 − α
and Pr(report ¬s∣prepare s) = α. To make the connection with the weak
measurement in quantum coin case, see Eq. (11) and Eq. (12), we take

α =
1 − λ

2

so that
Pr(s∣ψ) =

1

2
(1 − λsψ) (32)

For a coin that starts in heads ψ = +1, so

Pr(s∣ψ = +1) =
1

2
(1 = λs)
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In this case, the physical meaning of λ is clear-it is strength of the correlation
between the result s and the preparation ψ.

We now introduce a classical protocol directly analogous to the quantum
protocol that produces anomalous weak values. There are two people, Alice
and Bob. The protocol is as follows (see also Fig. 1):

Figure 1: An illustration of the protocol used to realize anomalous classical weak values.

1 Preselection: Alice tosses the coin, the outcome ψ is recorded, and
she passes it to Bob.

2.a Weak measurement: Bob reports s with the probabilities given in
equation (32).

2.b Classical disturbance: Bob flips the coin with probability given in
equation (37) and returns it to Alice.

3 Postselection: Alice looks at the coin and records the outcome φ.

For concreteness we preselect on heads, that is ψ = +1. Bob then makes
a weak measurement of the state of the coin, which is described by Eq.
(32). In order to implement classical backaction we introduce a probabilistic
disturbance parameter δ to our model. The effect of the disturbance on the
final measurement is realized through the following correlation between the
weak measurement of the sign s and the final strong measurement which we
label by φ:

Pr(s, φ = +1∣ψ = +1) =
δ

2
(33)

8



Pr(s, φ = −1∣ψ = +1) =
1

2
(1 + sλ − δ) (34)

This can be compactly written

Pr(s, φ∣ψ = +1) =
1

2
(1 + φδ + sλ)

One can easily verify that marginalizing over φ reproduces the distribution
of s in Eq. (32). Similarly, marginalizing over s yields

Pr(φ = +1∣ψ = +1) = δ (35)

Pr(φ = −1∣ψ = +1) = 1 − δ (36)

The point here is Bob will flip the coin (i.e. +1 → −1) with probability
1 − δ. Although, δ can be thought of as a “disturbance” parameter, a more
entertaining interpretation is to think of Bob as an “λ liar, δ deceiver”: Bob
accepts the coin and lies about the outcome with probability 1

2(1 − λ) and
then further, to cover his tracks, flips the coin before returning it to Alice
with probability ≈ 1− δ. Using Bayes rule we determine the probability that
Bob flips or does not flip the coin to be:

Pr(φ = −1∣ψ = +1) =
1 + sλ − δ

1 + sλ
flip (37)

Pr(φ = +1∣ψ = +1) =
1 + sλ + δ

1 + sλ
no flip (38)

Now we can ask, does the conditional expectation ever produce an anomalous
value? And, indeed it does if we condition on φ = −1:

aw = lim
λ→0

Es∣φ=−1,ψ=+1 [
s

λ
] (39)

= lim
λ→0
∑
s=±1

s

2λ
(

1 + sλ − δ

1 − δ
) (40)

=
1

1 − δ
(41)

If we change variables to δ = 1 − cos θ, we arrive at the same result as the
quantum cases in Eqs. (6) and (31). In particular, we see that the classical
weak value can be arbitrarily large provided the parameter δ is close to 1 and
we pre-select ψ = +1 and post-select on φ = −1. Take the example δ = 0.99.
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The classical weak value of s, from Eq. (41) with δ = 0.99, is aw = 100. Thus,
the outcome of the coin toss is 100 heads!

Before we conclude, we provide some preemptive rebuttals to the criticisms
we anticipate our paper will elicit. First, we have pointed out that our model
(in fact, any model) requires measurement disturbance for anomalous weak
values to manifest. Since, in theory, classical measurements can have infinite
resolution with no disturbance, some might consider our model non-classical.
However, in practice classical measurements do have disturbance and do not
have infinite precision. While we have not provided a physical mechanism
for the disturbance here, it is clear that many can be provided. Thus, we
leave the details of such a model open.

The second, and perhaps more significant potential criticism, is that we have
given a classical model where only real weak values occur. Whereas, the
quantum weak value is a complex quantity in general. It is often stated that
weak values are “measurable complex quantities” which further allow one
to “directly” access other complex quantities [27]. However, the method to
“measure” them is to perform separate measurements of the real and imagi-
nary parts. This illustrates that the weak value is actually a defined quantity
rather than a measured valued. Thus, we can easily introduce complex weak
values in our classical model with two observable quantities and simply multi-
ply one by the imaginary unit-not unlike descriptions of circular polarization
in classical electromagnetic theory.

In conclusion, our analysis above demonstrates a simple classical model which
exhibits anomalous weak values. Recall that the way in which weak values
are used in foundational analyses of quantum theory is to show that they
obtain anomalous values for “paradoxical” situations. To suggest that this is
meaningful or explanatory, it must be the case that such values cannot be
obtained classically. Here we have shown they can indeed. Thus, the con-
clusion that weak values can explain some paradoxical situation or verify its
quantumness are called to question. Our results provide evidence that weak
values are not inherently quantum, but rather a purely statistical feature of
pre- and post-selection with disturbance.
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