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Abstract

We present a loophole-free violation of local realism using entangled pho-
ton pairs. We ensure that all relevant events in our Bell test are space-
like separated by placing the parties far enough apart and by using fast
random number generators and high-speed polarization measurements. A
high-quality polarization-entangled source of photons, combined with high-
efficiency, low-noise, single-photon detectors, allows us to make measure-
ments without requiring any fair-sampling assumptions. Using a hypothesis
test, we compute p-values as small as 5.9 × 10−9 for our Bell violation while
maintaining the spacelike separation of our events. We estimate the degree
to which a local realistic system could predict our measurement choices. Ac-
counting for this predictability, our smallest adjusted p-value is 2.3 × 10−7.
We therefore reject the hypothesis that local realism governs our experiment.

But if [a hidden variable theory] is local it will not agree with quantum me-
chanics, and if it agrees with quantum mechanics it will not be local. This is
what the theorem says. - John Stewart Bell

Quantum mechanics at its heart is a statistical theory. It cannot with cer-
tainty predict the outcome of all single events, but instead it predicts proba-
bilities of outcomes. This probabilistic nature of quantum theory is at odds
with the determinism inherent in Newtonian physics and relativity, where
outcomes can be exactly predicted given sufficient knowledge of a system.
Einstein and others felt that quantum mechanics was incomplete. Perhaps
quantum systems are controlled by variables, possibly hidden from us [2],
that determine the outcomes of measurements. If we had direct access to
these hidden variables then the properties of quantum systems would not
need to be treated probabilistically. De Broglie’s 1927 pilot-wave theory was
a first attempt at formulating a hidden variable theory of quantum physics
[3]; it was completed in 1952 by David Bohm [4, 5]. While the pilot-wave
theory can reproduce all of the predictions of quantum mechanics, it has the
curious feature that hidden variables in one location can instantly change val-
ues because of events happening in distant locations. This seemingly violates
the locality principle from relativity, which says that objects cannot signal
one another faster than the speed of light. In 1935 the nonlocal feature of
quantum systems was popularized by Einstein, Podolsky, and Rosen [6], and
is something Einstein later referred to as “spooky actions at a distance”[7].



But in 1964 John Bell showed that it is impossible to construct a hidden
variable theory that obeys locality and simultaneously reproduces all of the
predictions of quantum mechanics [8]. Bell’s theorem fundamentally changed
our understanding of quantum theory and today stands as a cornerstone of
modern quantum information science.

Bell’s theorem does not prove the validity of quantum mechanics, but it does
allows us to test the hypothesis that nature is governed by local realism.
The principle of realism says that any system has pre-existing values for all
possible measurements of the system. In local realistic theories, these pre-
existing values depend only on events in the past lightcone of the system.
Local hidden-variable theories obey this principle of local realism. Local
realism places constraints on the behavior of systems of multiple particles—
constraints that do not apply to entangled quantum particles. This leads to
different predictions that can be tested in an experiment known as a Bell test.
In a typical two-party Bell test, a source generates particles and sends them
to two distant parties, Alice and Bob. Alice and Bob independently and
randomly choose properties of their individual particles to measure. Later,
they compare the results of their measurements. Local realism constrains the
joint probability distribution of their choices and measurements. The basis
of a Bell test is an inequality that is obeyed by local realistic probability
distributions but can be violated by the probability distributions of certain
entangled quantum particles [8]. A few years after Bell derived his inequality,
new forms were introduced by Clauser, Horne, Shimony and Holt [9], and
Clauser and Horne [10] that are simpler to experimentally test.

In a series of landmark experiments, Freedman and Clauser [11] and Aspect,
Grangier, Dalibard, and Roger [12-14] demonstrated experimental violations
of Bell inequalities using pairs of polarization-entangled photons generated
by an atomic cascade. However, due to technological constraints, these Bell
tests and those that followed (see [15] for a review) were forced to make
additional assumptions to show local realism was incompatible with their
experimental results. A significant violation of Bell’s inequality implies that
either local realism is false or that one or more of the assumptions made
about the experiment are not true; thus every assumption in an experiment
opens a “loophole”. No experiment can be absolutely free of all loopholes,
but in [16] a minimal set of assumptions is described that an experiment
must make to be considered “loophole free”. Here we report a significant,
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loophole free, experimental violation of local realism using entangled photon
pairs. We use the definition of loophole free as defined in [16]. In our ex-
periment the only assumptions that remain are those that can never—even
in principle—be removed. We present physical arguments and evidence that
these remaining assumptions are either true or untestable.

Bell’s proof requires that the measurement choice at Alice cannot influence
the outcome at Bob (and vice-versa). If a signal traveling from Alice can not
reach Bob in the time between Alice’s choice and the completion of Bob’s
measurement, then there is no way for a local hidden variable constrained
by special relativity at Alice to change Bob’s outcomes. In this case we say
that Alice and Bob are spacelike separated from one another. If an exper-
iment does not have this spacelike separation, then an assumption must be
made that local hidden variables cannot signal one another, leading to the
“locality” loophole.

Another requirement in a Bell test is that Alice and Bob must be free to
make random measurement choices that are physically independent of one
another and of any properties of the particles. If this is not true, then a
hidden variable could predict the chosen settings in advance and use that
information to produce measurement outcomes that violate a Bell inequal-
ity. Not fulfilling this requirement opens the “freedom-of-choice” loophole.
While this loophole can never in principle be closed, the set of hidden vari-
able models that are able to predict the choices can be constrained using
space-like separation. In particular, in experiments that use processes such
as cascade emission or parametric down-conversion to create entangled parti-
cles, space-like separation of the measurement choices from the creation event
eliminates the possibility that the particles, or any other signal emanating
from the creation event, influence the settings. To satisfy this condition, Al-
ice and Bob must choose measurement settings based on fast random events
that occur in the short time before a signal traveling at the speed of light from
the entangled-photon creation would be able to reach them. But it is fun-
damentally impossible to conclusively prove that Alice’s and Bob’s random
number generators are independent without making additional assumptions,
since their backward lightcones necessarily intersect. Instead, it is possible
to justify the assumption of measurement independence through a detailed
characterization of the physical properties of the random number generators
(such as the examination described in [17, 18]).
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In any experiment, imperfections could lead to loss, and not all particles will
be detected. To violate a Bell inequality in an experiment with two parties,
each free to choose between two settings, Eberhard showed that at least 2/3
of the particles must be detected [19] if non-maximally entangled states are
used. If the loss exceeds this threshold, then one may observe a violation by
discarding events in which at least one party does not detect a particle. This
is valid under the assumption that particles were lost in an unbiased manner.
However, relying on this assumption opens the “detector” or “fair-sampling”
loophole. While the locality and fair-sampling loopholes have been closed
individually in different systems [20-24], it has only recently been possible
in our system and in two others [25, 26] to close all loopholes simultane-
ously. These three experiments also address the freedom-of-choice loophole
by space-like separation.

Fundamentally a Bell inequality is a constraint on probabilities that are es-
timated from random data. Determining whether a data set shows violation
is a statistical hypothesis-testing problem. It is critical that the statistical
analysis does not introduce unnecessary assumptions that create loopholes.
A Bell test is divided into a series of trials. In our experiment, during each
trial Alice and Bob randomly choose between one of two measurement set-
tings (denoted {a, a′} for Alice and {b, b′} for Bob) and record either a “+”
if they observe any detection events or a “0” otherwise. Alice and Bob must
define when a trial is happening using only locally available information,
otherwise additional loopholes are introduced. At the end of the experiment
Alice and Bob compare the results they obtained on a trial-by-trial basis.
Our Bell test uses a version of the Clauser-Horne/Eberhard inequality [10,
19, 27] where, according to local realism,

P (+ + ∣ab) ≤ P (+0∣ab′) + P (0 + ∣a′b) + P (+ + ∣a′b′) (1)

The terms P (+ + ∣ab) and P (+ + ∣a′b′) correspond to the probability that
both Alice and Bob record detection events (++) when they choose the mea-
surement settings ab or a′b′, respectively. Similarly, the terms P (+0∣ab′) and
P (0 + ∣a′b) are the probabilities that only Alice or Bob record an event for
settings ab′ and a′b, respectively. A local realistic model can saturate this
inequality; how- ever, the probability distributions of entangled quantum
particles can violate it.

To quantify our Bell violation we construct a hypothesis test based on the

4



inequality in Eq. (1). The null hypothesis we test is that the measured
probability distributions in our experiment are constrained by local realism.
Our evidence against this null hypothesis of local realism is quantified in a
p-value that we compute from our measured data using a test statistic. Our
test statistic takes all of the measured data from Alice’s and Bob’s trials
and summarizes them into a single number (see the Supplemental Material
for further details). The p-value is then the maximum probability that our
experiment, if it is governed by local realism, could have produced a value of
the test statistic that is at least as large as the observed value [28]. Smaller p-
values can be interpreted as stronger evidence against this hypothesis. These
p-values can also be used as certificates for cryptographic applications, such
as random number generation, that rely on a Bell test [24, 29]. We use a
martingale binomial technique [27] for computing the p-value that makes no
assumptions about the distribution of events and does not require that the
data be independent and identically distributed [30] as long as appropriate
stopping criteria are determined in advance.

In our experiment, the source creates polarization- entangled pairs of pho-
tons and distributes them to Alice and Bob, located in distant labs. At the
source location a mode-locked Ti:Sapphire laser running at repetition rate
of approximately 79.3 MHz produces picosecond pulses centered at a wave-
length of 775 nm as shown in figure 1. These laser pulses pump an apodized
periodically poled potassium titanyl phosphate (PPKTP) crystal to produce
photon pairs at a wavelength of 1550nm via the process of spontaneous para-
metric downconversion [31]. The downconversion system was designed using
the tools available in [32]. The PPKTP crystal is embedded in the middle of
a polarization-based Mach-Zehnder interferometer that enables high-quality
polarization-entangled states to be generated [33]. Rotating the polarization
analyzer angles at Alice and Bob, we measure the visibility of coincidence
detections for a maximally entangled state to be 0.999±0.001 in the horizon-
tal/vertical polarization basis and 0.996± 0.001 in the diagonal/antidiagonal
polarization basis (see [34] for information about the reported uncertainties).
The entangled photons are then coupled into separate single-mode optical
fibers with one photon sent to Alice and the other to Bob. Alice, Bob, and
the source are positioned at the vertices of a nearly right-angle triangle.
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Figure 1: Schematic of the entangled photon source. A pulsed 775 nm-wavelength
Ti:Sapphire picosecond mode-locked laser running at 79.3 MHz repetition rate is used
as both a clock and a pump in our setup. A fast photodiode (FPD) and divider circuit
are used to generate the synchronization signal that is distributed to Alice and Bob.
A polarization-maintaining single-mode fiber (SMF) then acts as a spatial filter for the
pump. After exiting the SMF, a polarizer and half-wave plate (HWP) set the pump
polarization. To generate entanglement, a periodically poled potassium titanyl phosphate
(PPKTP) crystal designed for Type-II phasematching is placed in a polarization-based
Mach-Zehnder interferometer formed using a series of HWPs and three beam displacers
(BD). At BD1 the pump beam is split in two paths (1 and 2): the horizontal (H) component
of polarization of the pump translates laterally in the x direction while the vertical (V)
component of polarization passes straight through. Tilting BD1 sets the phase, φ, of the
interferometer to 0. After BD1 the pump state is (cos (16○) ∣H1⟩+sin (16

○
) ∣V2⟩. To address

the polarization of the paths individually, semi-circular waveplates are used. A HWP in
path 2 rotates the polarization of the pump from vertical (V) to horizontal (H). A second
HWP at 0○ is inserted into path 1 to keep the path lengths of the interferometer balanced.
The pump is focused at two spots in the crystal, and photon pairs at a wavelength of
1550nm are generated in either path 1 or 2 through the process of spontaneous parametric
downconversion. After the crystal, BD2 walks the V-polarized signal photons down in
the y direction (V1a and V2a) while the H-polarized idler photons pass straight through
(H1b and H2b). The x − y view shows the resulting locations of the four beam paths.
HWPs at 45○ correct the polarization while HWPs at 0○ provide temporal compensation.
BD3 then completes the interferometer by recombining paths 1 and 2 for the signal and
idler photons. The two downconversion processes interfere with one another, creating the
entangled state in Eq. (2). A high-purity silicon wafer with an anti-reflection coating is
used to filter out the remaining pump light. The idler (signal) photons are coupled into a
SMF and sent to Alice (Bob).

Due to constraints in the building layout, the photons travel to Alice and Bob
in fiber optic cables that are not positioned along their direct lines of sight.
While the photons are in flight toward Alice and Bob, their random num-
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ber generators each choose a measurement setting. Each choice is completed
before information about the entangled state, generated at the PPKTP crys-
tal, could possibly reach the random number generators. When the photons
arrive at Alice and Bob, they are launched into free space, and each pho-
ton passes through a Pockels cell and polarizer that perform the polarization
measurement chosen by the random number generators as shown in Fig. 2.

Figure 2: Receiver station setup for Alice and Bob. A photon arrives from the source.
Two half-wave plates (HWP), a quarter-wave plate (QWP), a Pockels cell (PC), and two
plate polarizers together act to measure the polarization state of the incoming photon.
The polarization projection is determined by a random bit from XORing the outputs of
two random number generators (RNG1 and RNG2) with pre-determined pseudorandom
bits (RNG3). If the random bit is “0”, corresponding to measurement setting a(b) for Alice
(Bob), the Pockels cell remains off. If the random bit is “1”, corresponding to measurement
setting a?(b?) for Alice (Bob), then a voltage is applied to the Pockels cell that rotates the
polarization of the photons using a fast electro-optic effect. The two plate polarizers have
a combined contrast ratio > 7000:1. The photons are coupled back into a single-mode fiber
(SMF) and detected using a superconducting nanowire single-photon detector (SNSPD).
The signal is amplified and sent to a time-tagging unit where the arrival time of the event
is recorded. The time tagger also records the measurement setting, the synchronization
signal, and a one pulse-per-second signal from a global positioning system (GPS). The
pulse-per-second signal provides an external time reference that helps align the time tags
Alice and Bob record. A 10 MHz oscillator synchronizes the internal clocks on Alice’s
and Bob’s time taggers. The synchronization pulse from the source is used to trigger the
measurement basis choice.

After the polarizer, the photons are coupled back into a single-mode fiber
and sent to superconducting nanowire single-photon detectors, each with a
detection efficiency of 91 ± 2% [35]. The detector signal is then amplified
and sent to a time tagger where the arrival time is recorded. We assume the

7



measurement outcome is fixed when it is recorded by the time tagger, which
happens before information about the other party’s setting choice could pos-
sibly arrive, as shown in Fig. 3(b).

Figure 3: Minkowski diagrams for the spacetime events related to Alice (A) and the
source (S) and Bob (B) and the source (a), and Alice and Bob (b). All lightcones are
shaded blue. Due to the geometry of Alice, Bob, and the source, more than one spacetime
diagram is required. In a) the random number generators (RNGs) at Alice and Bob must
finish picking a setting outside the lightcone of the birth of an entangled photon pair. A
total of 15 pump pulses have a chance of downconverting into an entangled pair of photons
each time the Pockels cells are on. The events related to the first pulse are not spacelike
separated, because Alice’s RNG does not finish picking a setting before information about
the properties of the photon pair can arrive; pulses 2 through 11 are spacelike separated.
As shown in (b), pulses 12 through 15 are not spacelike separated as the measurement is
finished by Alice and Bob after information about the other party’s measurement setting
could have arrived. In our experiment the events related to pulse 6 are the furthest outside
of all relevant lightcones.
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Alice and Bob have system detection efficiencies of 74.7±0.3% and 75.6±0.3%,
respectively. We measure this system efficiency using the method outlined by
Klyshko [36]. Background counts from blackbody radiation and room lights
reduce our observed violation of the Bell inequality. Every time a back-
ground count is observed it counts as a detection event for only one party.
These background counts increase the heralding efficiency required to close
the detector loophole above 2/3 [19]. To reduce the number of background
counts, the only detection events considered are those that occur within a
window of approximately 625ps at Alice and 781 ps at Bob, centered around
the expected arrival times of photons from the source. The probability of
observing a background count during a single window is 8.9 × 10−7 for Al-
ice and 3.2 × 10−7 for Bob, while the probability that a single pump pulse
downconverts into a photon pair is ≈ 5 × 10−4. These background counts in
our system raise the efficiency needed to violate a Bell inequality from 2/3
to 72.5%. Given our system detection efficiencies, our entangled photon pro-
duction rates, entanglement visibility, and the number of background counts,
we numerically determine the entangled state and measurement settings for
Alice and Bob that should give the largest Bell violation for our setup. The
optimal state is not maximally entangled [19] and is given by:

∣ψ⟩ = 0.961 ∣HAHB⟩ + 0.276 ∣VAVB⟩ (2)

where H(V ) denotes horizontal (vertical) polarization, and A and B cor-
respond to Alice’s and Bob’s photons, respectively. From the simulation
we also determine that Alice’s optimal polarization measurement angles,
relative to a vertical polarizer, are {a = 4.2○, a′ = −25.9○} while Bob’s are
{b = −4.2○, b′ = 25.9○}.

Synchronization signals enable Alice and Bob to define trials based only on
local information. The synchronization signal runs at a frequency of 99.1
kHz, allowing Alice and Bob to perform 99,100 trials/s (79.3 MHz/800).
This trial frequency is limited by the rate the Pockels cells can be stably
driven. When the Pockels cells are triggered they stay on for ≈ 200 ns. This
is more than 15 times longer than the 12.6ns pulse-to-pulse separation of
the pump laser. Therefore photons generated by the source can arrive in
one of 15 slots while both Alice’s and Bob’s Pockels cells are on. Since the
majority of the photon pulses arriving in these 15 slots satisfy the spacelike
separation constraints, it is possible to aggregate multiple adjacent pulses
to increase the event rate and statistical significance of the Bell violation.
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However, including too many pulses will cause one or more of the spacelike
separation constraints to be violated. Because the probability per pulse of
generating an entangled photon pair is so low, given that one photon has
already arrived, the chance of getting a second event in the same Pockels cell
window is negligible (< 1%).

Alice and Bob each have three different sources of random bits that they XOR
together to produce their random measurement decisions (for more informa-
tion see the Supplemental Materials). The first source is based on measuring
optical phase diffusion in a gain-switched laser that is driven above and be-
low the lasing threshold. A new bit is produced every 5 ns by comparing
adjacent laser pulses [17]. Each bit is then XORed with all past bits that
have been produced (for more details see the Supplemental Material). The
second source is based on sampling the amplitude of an optical pulse at the
single-photon level in a short temporal interval. This source produces a bit
on demand and is triggered by the synchronization signal. Finally, Alice and
Bob each have a different predetermined pseudorandom source that is com-
posed of various popular culture movies and TV shows, as well as the digits
of π, XORed together. Suppose that a local-realistic system with the goal of
producing violation of the Bell inequality, was able to manipulate the prop-
erties of the photons emitted by the entanglement source before each trial.
Provided that the randomness sources correctly extract their bits from the
underlying processes of phase diffusion, optical amplitude sampling, and the
production of cultural artifacts (such as the movie Back to the Future), this
powerful local realistic system would be required to predict the outcomes of
all of these processes well in advance of the beginning of each trial to achieve
its goal. Such a model would have elements of superdeterminism—the fun-
damentally untestable idea that all events in the universe are preordained.

Over the course of two days we took a total of 6 data runs with differing con-
figurations of the experimental setup [37]. Here we report the results from
the final dataset that recorded data for 30 minutes (see the Supplemental
Material for descriptions and results from all datasets). This is the dataset
where the experiment was most stable and best aligned; small changes in cou-
pling efficiency and the stability of the Pockels cells can lead to large changes
in the observed violation. The events corresponding to the sixth pulse out
of the 15 possible pulses per trial are the farthest outside all the relevant
light-cones. Thus we say these events are the most spacelike separated. To
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increase our data rate we aggregate multiple pulses centered around pulse
number 6. We consider different Bell tests using a single pulse (number 6),
three pulses (pulses 5, 6, and 7), five pulses (pulses 4 through 8), and seven
pulses (pulses 3 through 9). The joint measurement outcomes and corre-
sponding p-values for these combinations are shown in Table 1.

Aggregate N(+ + ∣ab) Nstop Total trials P-value Adjusted Timing Minimum
Pulses p-value Margin (ns) distance (m)

1 1257 2376 175,654,992 2.5 × 10−3 5.9 × 10−3 63.5 ± 3.7 9.2
3 3800 7211 175,744,824 2.4 × 10−6 2.3 × 10−5 50.9 ± 3.7 7.3
5 6378 12127 177,358,351 5.9 × 10−9 2.3 × 10−7 38.3 ± 3.7 5.4
7 8820 16979 177,797,650 2.0 × 10−7 9.2 × 10−6 25.7 ± 3.7 3.5

Table 1: P-value results for different numbers of aggregate pulses. Here N(+ + ∣ab)
refers to the number of times Alice and Bob both detect a photon with settings a and
b respectively. Before analyzing the data a stopping criteria, Nstop, was chosen. This
stopping criteria refers to the total number of events considered that have the settings and
outcomes specified by the terms in Eq. (1), Nstop = N(+ + ∣ab) +N(+0∣ab

′
) +N(0 + ∣a′b) +

N(+ + ∣a′b′). After this number of trials the p-value is computed and the remaining trials
discarded. Such pre-determined stopping criteria are necessary for the hypothesis test we
use (see Supplemental Material for more details). The total trials include all trials up
to the stopping criteria regardless of whether a photon is detected. The adjusted p-value
accounts for the excess predictability we estimate from measurements of one of our random
number generators. As discussed in the text, the time difference between Bob finishing
his measurement and the earliest time at which information about Alice’s measurement
choice could arrive at Bob sets the margin of timing error that can be tolerated and still
have all events guaranteed to be spacelike separated. We also give the minimum distance
between each party and its boundary line (shown in Fig. 4(a)) that guarantees satisfaction
of the spacelike separation constraints. In the Supplemental Material the frequencies of
each combination of settings choice for 5 aggregate pulses is reported.

For a single pulse we measure a p-value = 2.5×10−3, for three pulses a p-value
= 2.4×10−6, for five pulses a p-value = 5.9×10−9 and for seven pulses a p-value
= 2.0 × 10−7, corresponding to a strong violation of local realism.

If, trial-by-trial, a conspiratorial hidden variable (or attacker in cryptographic
scenarios) has some measure of control over or knowledge about the settings
choices at Alice and Bob, then they could manipulate the outcomes to ob-
serve a violation of a Bell inequality. Even if we weaken our assumption that
Alice’s and Bob’s setting choices are physically independent from the source,
we can still compute valid p-values against the hypothesis of local realism.
We characterize the lack of physical independence with predictability of our
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random number generators.

Figure 4: (a) The positions of Alice (A), Bob (B), and the source (S) in the building
where the experiment was carried out. The insets show a magnified (×2) view of Alice’s
and Bob’s locations. The white dots are the location of the random number generators
(RNGs). The larger circle at each location has a radius of 1m and corresponds to our
uncertainty in the spatial position measurements. Alice, Bob, and the source can be
located anywhere within the green shaded regions and still have their events be spacelike
separated. Boundaries are plotted for aggregates of one, three, five, and seven pulses.
Each boundary is computed by keeping the chronology of events fixed, but allowing the
distance between the three parties to vary independently. In (b) the p-value of each of the
individual 15 pulses is shown. Overlayed on the plot are the aggregate pulse combinations
used in the contours in (a). The statistical significance of our Bell violation does not
appear to depend on the spacelike separation of events. For reference and comparison
purposes only, the corresponding number of standard deviations for a given p-value (for a
one-sided normal distribution) are shown.

The “predictability”, P , of a random number generator is the probability
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with which an adversary or local realistic system could guess a given setting
choice. We use the parameter ε, the “excess predictability” to place an upper
bound on the actual predictability of our random number generators:

P ≤ 1

2
(1 + ε) (3)

In principle, it is impossible to measure predictability through statistical
tests of the random numbers, because they can be made to appear random,
unbiased, and independent even if the excess predictability during each trial
is nonzero. Extreme examples that could cause nonzero excess predictability
include superdeterminism or a powerful and devious adversary with access
to the devices, but subtle technical issues can never be entirely ruled out.
Greater levels of excess predictability lead to lower statistical confidence in
a rejection of local realism. In Fig. 5 we show how different levels of ex-
cess predictability change the statistical significance of our results [38] (see
Supplemental Materials for more details).

Figure 5: The p-value for different numbers of aggregate pulses as a function of the excess
predictability, ε, in Alice’s and Bob’s measurement settings. Larger levels of predictability
correspond to a weakening of the assumption that the settings choices are physically
independent of the photon properties Alice and Bob measure. As in Fig. 4(b), the p-
value equivalent confidence levels corresponding to the number of standard deviations of
a one-sided normal distribution are shown for reference.
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We can make estimates of the excess predictability in our system. From addi-
tional measurements, we observe a bias of (1.08± 0.07) × 10−4 in the settings
reaching the XOR from the laser diffusion random source, which includes
synchronization electronics as well as the random number generator. If this
bias is the only source of predictability in our system, this level of bias would
correspond to an excess predictability of approximately 2 × 10−4. To be con-
servative we use an excess predictability bound that is fifteen times larger,
εp = 3 × 10−3 (see Supplemental Material for more details). If our experi-
ment had excess predictability equal to εp our p-values would be increased
to 5.9 × 10−3, 2.4 × 10−5, 2.3 × 10−7, and 9.2 × 10−6 for one, three, five, and
seven pulses, respectively [38]. Combining the output of this random number
generator with the others should lead to lower bias levels and a lower excess
predictability, but even under the the paranoid situation where a nearly su-
perdeterministic local realistic system has complete knowledge of the bits
from the other random number sources, the adjusted p-values still provide a
rejection of local realism with high statistical significance.

Satisfying the spacetime separations constraints in Fig. 3 requires precise
measurements of the locations of Alice, Bob, and the source as well as the
timing of all events. Using a combination of position measurements from a
global positioning system (GPS) receiver and site surveying, we determine
the locations of Alice, Bob, and the source with an uncertainty of < 1m. This
uncertainty is set by the physical size of the cryostat used to house our detec-
tors and the uncertainty in the GPS coordinates. There are four events that
must be spacelike separated: Alice’s and Bob’s measurement choice must be
fixed before any signal emanating from the photon creation event could arrive
at their locations, and Alice and Bob must finish their measurements before
information from the other party’s measurement choice could reach them.
Due to the slight asymmetry in the locations of Alice, Bob, and the source,
the time difference between Bob finishing his measurement and information
possibly arriving about Alice’s measurement choice is al- ways shorter than
the time differences of the other three events as shown in Fig. 3(b). This
time difference serves as a kind of margin; our system can tolerate timing
errors as large as this margin and still have all events remain spacelike sepa-
rated. For one, three, five, and seven aggregate pulses this corresponds to a
margin of 63.5 ± 3.7 ns, 50.9 ± 3.7 ns, 38.3 ± 3.7 ns, and 25.7 ± 3.7 ns, respec-
tively as shown in Table I. The uncertainty in these timing measurements is
dominated by the 1 m positional uncertainty (see Supplemental Material for
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further details on the timing measurements).

A way to visualize and further quantify the the space- like separation of
events is to compute how far Alice, Bob, and source could move from their
measured position and still be guaranteed to satisfy the locality constraints,
assuming that the chronology of all events remains fixed. In figure 4(a) Alice,
Bob, and the source locations are surrounded by shaded green regions. As
long as each party remains anywhere inside the boundaries of these regions
their events are guaranteed to be spacelike separated. There are specific con-
figurations where all three parties can be outside the boundaries and still
be spacelike separated, but here we consider the most conspiratorial case
where all parties can collude with one another. The boundaries are over-
layed on architectural drawings of the building in which the experiment was
performed. Four different boundaries are plotted, corresponding to the Bell
test performed with one, three, five, and seven aggregate pulses. Minimizing
over the path of each boundary line, the minimum distance that Alice, Bob,
and the source are located from their respective boundaries is 9.2 m, 7.3 m,
5.4 m, and 3.5 m for aggregates of one pulse, three pulses, five pulses, and
seven pulses, respectively. For these pulse configurations we would have had
to place our source and detection systems physically in different rooms (or
even move outside of the building) to compromise our spacelike separation.
Aggregating more than seven pulses leads to boundaries that are less than
three meters away from our measured positions. In these cases we are not
able to make strong claims about the spacelike separation of our events.

Finally, as shown in Fig. 4(b), we can compute the 15 p-values for each of the
time slots we consider that pho- tons from the source can arrive in every trial.
Photons arriving in slots 2 through 11 are spacelike separated while photons
in slots 12 through 15 are not. The photons arriving in these later slots are
measured after information from the other party’s random number generator
could arrive as shown in Fig. 3(b). It appears that spacelike separation has
no discernible effect on the statistical significance of the violation. However,
we do see large slot-to-slot fluctuation in the calculated p-values. We sus-
pect that this is due to instability in the applied voltage when the Pockels
cell is turned on. In this case photons receive slightly different polarization
rotations depending on which slot they arrive in, leading to non-ideal mea-
surement settings at Alice and Bob. It is because of this slot-to-slot variation
that the aggregate of seven pulses has a computed p-value larger than the
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five-pulse case. Fixing this instability and using more sophisticated hypoth-
esis test techniques [39-41] will enable us to robustly increase the statistical
significance of our violation for the seven pulse case.

The experiment reported here is a commissioning run of the Bell test ma-
chine we eventually plan to use to certify randomness. The ability to include
multiple pulses in our Bell test highlights the flexibility of our system. Our
Bell test machine is capable of high event rates, making it well suited for
generating random numbers required by cryptographic applications [29]. Fu-
ture work will focus on incorporating our Bell test machine as an additional
source of real-time randomness into the National Institute of Standards and
Technology’s public random number beacon (https://beacon.nist.gov).

It has been 51 years since John Bell formulated his test of local realism.
In that time his inequality has shaped our understanding of entanglement
and quantum correlations, led to the quantum information revolution, and
transformed the study of quantum foundations. Until recently it has not
been possible to carry out a complete and statistically significant loophole-
free Bell test. Using advances in random number generation, photon source
development, and high-efficiency single-photon detectors, we are able to ob-
serve a strong violation of a Bell inequality that is loophole free, meaning
that we only need to make a minimal set of assumptions. These assumptions
are that our measurements of locations and times of events are reliable, that
Alice’s and Bob’s measurement outcomes are fixed at the time taggers, and
that during any given trial the random number generators at Alice and Bob
are physically independent of each other and the properties of the photons
being measured. It is impossible, even in principle, to eliminate a form of
these assumptions in any Bell test. Under these assumptions, if a hidden
variable theory is local it does not agree with our results, and if it agrees
with our results then it is not local.
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