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Lecture 1
LECTURES ON ®"CONTINUOUS GROUPS AND REFLECTIONS
IN QUANTUM MECHANICS"™ BY W. PAULI

Notes by R. J, Riddell, Jr.
Radiation Laboratory
University of California
Berkeley, California
Spring 1958
LECTURE 1

Continuous Groups and Reflections in Quantum Theory

Interesting subjects:

a, Lorentz gr.
b, Canonical gr.
c. Linear Canonical transformations (Symplectic Gr.)
For (a), the spinors will be interesting, and the more recent appli-
cations concern the neutrinos. Also:
Majorana spinors
Charge conjugation - discrete gr.

Space reflections (parity) - discrete gr.

We will discuss the 2 x 2 matrices introduced by Gursey.
Then comess |

Isotopic spin

Quantization questions

Vacuum expectation values

Weak interactions

Analytic continuation (Wightman)

C P T theorem.
We will use free particles but only as examples, preparatory to the

the interacting case.
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:=6c=7
Elementary properties of 2 x 2 matrices
We will have, in general,
A= A11 A12
A
A21 22
and now considers:
0 -1 ~ 2 -1
W= ; W = =W W = =1, W= -
1 0
Nows
Dz det A = A -
1 ° 11 22 12 21
but:
wAW™Y =z A=pat,

Thus the inverse can be specified as a rational construct of A if D Z O,

2
Alsos

Remark on canonical transforms

Consider the pairs of variables pyq, = X _,X
i 71 2i-1" 2%

g 000 = X quooox
(p1) ql)s ) (pn9 qn) E (19 ST ?_n)

and we will treat the linear canon transforms of these variables.

Define: o - O .

0 = Is)

0 0,"’ o...

A canonical transform will leave (L invariant:

¢
Lets X =ZzX S
i kK ki

Thens SLs = L
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m?m
(If we had required orthogonality instead, we would omit the {L and get s8 = 1.)

Now considers

X' =% .S,
"=y s
v, =S,

ands
Xy = XxXssy = X0y

Thus the form is invariant, X0yz 2 [p (2) qi(1) - pi(l) qo(zﬂ
1 i e

If we specialize to n = 1; then the condition is equivalent ¢ D = 1,

Thus a linear canonical transform is equivalent tc a unimodular transform.

For n# 1, D is still necessary, but not sufficient for the canonical form,
This is clear by taking the det of egn. det S = det %S, This only proves
D=2 1. The Liouville theorem says D = 41, and it can be proved independent
of continuity arguments. There is a difference in the orthogonal group

{reflsctions).

Spinors
Let us now introduces
o 1 0 i 10
o = o= o =
1 1 0 2 i 0 3 0 -1
Except for an "i%, these are the quaternions,
2
oy 10" 50003 g =
102 7 0500005 Uy B2
The relations are retained under a unitary transform, Heres W= = 1 Oé o

In other representations, however, w is invariant so the relation is only

specially true. We also introduces

. [1 0 2

0% " and O = iQ C=.1,
0 1 4 0

AN
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QOther relaticons:

o- ;”0\0- oo o
o S

172

NOteg D -7 B = l i = lgooo [}

[ [ oF g soees b
Thuss

o = ~ =1 ~ - - -
i’“’(/‘)o}w Oiwwo;w =1,2,3
whils -1
o z W6 W .
094 094

Unitary Transforms.

U corresponds to the rotation gr. in 3=dimensions.

Now consider:

i O*i
U (=) =e = cosot + 107 sin
(Expanding e 1 and using <= 1),
o ot + A = =3 U &
Here: U(l 2) U(l) J(z)o

Thus we have the one-~dimension rotation group about the i axis,

(The ccnnection with ccordinates will come in later.)
i O =1 U’i

N N 1t =
U is of zourse unitary: U U =8 e = 1.
+ ¢ g
U = cecsox = 1 sinotl;
- . . ; o : . ~ b
If we want to rotate about an arbitrary axis, 'n:

A
fu¢! / ) .
ei () = cosw + 1 sine (A-ov)

U =
Thus: Det U = 1
; 22 is i . . D
since n-& is invariant cn rctations.
To get Det U £ 1, we can introduce an arbitrary phase factors
o= o U

=

Ifs  {des U |2

i

1)

det U . e

i
)
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The most general U iss
iX(ﬁ'gﬁq-%ﬂ

U = e
FOOTNCTES
0] =1 A A 0 1
~ =1
1. WAW = 11 21} ,
1 0 A12 A22 =1 0
0 - -A Y
- 1 21 ll) = 22 12
- A - A
. 0 A22 12 A21 11
Bute
A A A-A LA 0
WAW™ A = 1172272721 =D Q.E.D.
0 Ayihoomhiohn
A A 0 -] +A A
2. A (A)K - 11 12 11 21
Ay Ay 10 ha Ay
0 ~A A A A
= 11 22 12 21 =&)D{A~}
- +
‘A‘_|.2A2l A].1'1“22 ©
3. We have, as egns. of motion:
dx
i H . o
at = ik %2, by = - 2§' v 94 7 Qﬁ_j}
K 293 3Pi
and:s .
dx. ol
L P s = 24
dt dt Ki ki 92’9t Ki
ox!
H & m ~ H
= S I = S
Ki ki 9%’y % ( ik KR ym ) ox!
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FOOTNOTES
30 (COnt)
.. o= Sns
Buts
~ ~
Su= SN S
P | “lN_l~°'l P
4 =z § LT s e L = N

so: No= sNn§

p: , 2
(n.0~ +n 0 +no )
X X vy z 2

~
o
o]
z
1]

-

2 2 < -
: G +o~& 000 :

A Ry R By b gy Wygy T OO ) e 32
13
0

56 Or:
- C ain o 3 - 4 \
08 o« + 1 sinotn, i 51no<(nx ,.ny)
U =

i sin o (n, +3in_) cosx - i sin oen_
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LECTURE ON ®CONTINUOQUS GROUPS AND REFLECTICNS
IN QUANTUM MECHANICS"™ BY W. PAULI
Notes by R. J. Riddell, Jr,
Radiation Laboratory
University of California
Berkeley, California
Spring 1958
LECTURE 2
Connection between the rotation group and Lorentz group with
transformations of 2 complex variables,
The Lorentz group is a representation of the unimodular group of
2 x 2 complex matrices,

Considers:

75“ = E/QA/B“ A/go( = complex

[23

This will be isomorphic to the Lorentz group. Det A = 1. The subgroup

of unitary transforms: A AT = AT

A = 1 is isomorphic to the
3-dimensional rotations,

The connection is most simply illustrated by considering a null-vector:

r = 1 = 0
Then we define:™
X = iy - t -z - EZ
t +2z x + iy ?l
*
x +1iy t -2 52
t+ 2 - X - iy - ‘gl
Then:
¥* 3¢
x - iy = CE § x +iy = CE
y 1 55 y 5
gy g
t+z=C 1 t -z=0C 5 %5
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Now, we introduce the matrix

t+ 3z X - iy

- -X
\x:+-iy T o= Z

(Note that ‘g* is treated as a column vector; ¥, a row.)

Evidentlyg2

which gives ,2

then3 .

and to each transform, A4, of the ¢'s we get a transform on the X's,

X k3 o 2 3 | - a
The det is invariant if det A] = 1, so this corresponds to a Lorentz
9

2
transformation, maintaining {2] . t7 = const., We use:
det X' = det X ° |det A,2 .

E?hough X here is a null-vector, the relation is true in any case}]

We may generalize to a non-zero vector by choosing:

= ® * *
Xx/g (7%, =1 Yzﬂ)
where the ¥ choice gives a time-=like or a space-like vector.
Theng4
2 2 2 ]2
det x = £C i - % ] =z ot - ’xl
E1Y22 = 2721

Nows % M
t = ptr)} = FCLE E T ESE))
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so that the Trace=inv. unitarity restriction on A gives the sub-group of
spatial-rotations, Note that if C >0, t >C; C <, t <C.

From the definition of X: , we find:
x

,6 *

- - % _
X €T E (where Xuﬂ = 25; E/)
or:5
XK: EO_KE* k = 0_9 19 29 30 (Or l}°°°94‘)
g = 1 o

-—g o000

Now, under a Lorentz transform

Y - .
: X i A = o 0 ¢
/\k Zl 3 ui}( ( ) k la 34

and we readily fing:

-+
A0 A o-. L, (4),
K 1 1K

which thus relates A +to L7o The transformation preserves the dets., of the O‘i“sc

If we now consider: A and the related L (A) as well as B and the
related L (B) then:

L (B) - L (4).

BA is related to L (B A)
this follows from:
n —
\g—‘gA=EBA

Where we let B operate and then A. Then we get:

XL (B) L (4) =XL (BA).

~
H

>

e

&
fi

Also:

o- L. (B) L . (&) (8o~ BY) L
i K k

. (A
1K KJ J (&)

= Bao A" BT

J

Q.E.D.

So far, we have proven that:
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To every unitary A, there is associated a 3-D rot.

[

Tec every unimodular A, there is associated a Lorentz

in

transform.

The relations are not unique, however, since by continuous transforms we

can change '

3

This leaves the 'XK“S unchanged., Consider a continuous rotation about

= = 3.

o<

1 o0
o = - e
3 0 -1 E

jx 0‘3

This corresponds to a rotation by 2%, Thus:

whereas:

e
N

1]

[}

e
N

11

M
N

i =230

fi
®
§

A Field Theory

#*
Let us now identify ¢ , a 2-component spinor, with g

*
and ¢ with ¥ . Then we write:

2> ¢ . _ *
= pow e T 20y
The momentum vector is:
PK = (B, po) (a null-vector)

8.¢ 1
0" - ° o= o
PO, =B OU-D

Further, we will define:

(px o )y = £ x const.
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Now if: ' = A Y (since W ~%) ,
theng8
+
1 = T o nt = L a- YA
g (p, . ) w (p ik %
= pL, Aol y=alpo)y =4ty
i3k 11K 1
In 3-D rotations, A = A'lg so that ) and @ transform in the same

way. In the complete Lorentz case, however, they are different.

We may recall that

~ ] -
WEW™ = (det A) A% .,

Ifs ﬁ = ajw* {(this is Just one particular way to construct ﬂ)

Then:
H ~ % - i ;
ull ::wq)* = WAW = Alwq)* = A9,
since9 det A = 1.
FOOTNOTES
1 Since
(x +1y) (x=-1y) = {3 +2) (t=-12) = 0,
#
X = iy ez x=-1iy ¢ E,
- =222
t + 2z X + iy x + iy El 52*
or: #* ? *
- ] = C iy =
X -1y 5% T 035,

where C 1is a real constant (normalization)

Then: ¥

3*
t+z = % (x-1y) = C8 .1
. #*
= =2, ( . = *
t = = X =1 = C

Note that, if + >0, C>0 and if t< 0, C <O,
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FOOTNOTES
2. *e ¥
gl 55 él }'2
X=c
* ¥*
52 ?i ?2 §2
\g*“fn 3 *
3 ! = 3k = € A__ T A
Xk/g £ ¥ XX 5 %Y
= = & X A
= p<‘b' ? Es %,? - =<y ¥s Sﬁ o
beo Since the ¥ parts or Yz parts have det x = 0, we gets

# # * *
S AR RS

e, n

!\ * 3*
- V)
{}- 72 [E Yez %, Yz ] 521 Lil t2
¥ ¥ il
-5y = = ,lgwrz’
5 Here, again, % i3 on the right because of its role as a column vector.
5 b

+
6. ' TAOC ATZTH < ¥ L
X = % K B _‘S‘cri‘g ik
K
and since L doesn't operate on the § , and ¥ is arbitrary we get the stated
result,

7, We can get another such relation from

X = Xk"}(l - 2sk4>9

which is evident from the explicit form of X, Nows

“ “ (1-25 ) =a"™a za'x ¢ 1-25 ) A
K K K K4
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FOOTNOTES
7., (Cont.)
\ -
Thus: XL o 1=2 = X Ao (1L =258 A
175k K ( 5k4) K - K4)
SG3

i

+ .
L 0 (1-2% AT {32 -2 A
seoK ( 2 k4) ;0 EA)

L L o (1-25 =4a¢c1 {1-25) A
171K K “*ry TET 14,

e’

5 o 1-2% iAo L (1-25)A
kg K " 4, B ”

and finallys

() g (G-25 )4t =0 L (1-25 )
2 i4 i4

R

If we have a 3-D rotation, AT = A7l and the relation is the same as on

page 3.
g,  We use x.'x." = XL XL
i 1 J 31 v ki
- X, XL L
J K jiki
.. L L =% .
Ji ki JK
9, The requirement for a Lorentz transform is only the ! det A \ = 1o

However, if det A # 1 , we can always choose A® = eig A  such that
det A' = 1, This leaves X unchanged and so only serves to make A

unique in this respect.
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LECTURE ON "™CONTINUOUS GROUPS AND REFLECTIONS
IN QUANTUM MECHANICS" BY W. PAULI
Notes by R, J. Riddell, Jr.
Radiation Laboratory
University of California
Berkeley, California
Spring 1958
LECTURE

Now, we will obtain the Dirac equation:

(pkfk)kp = const., § = - mf o
(The const., m has the meaning of a rest-mass)
(p+ BHY =-ng
so if we also chooses

(po+ 303) ¢ = m\.!}

2
(mP02-$ (B)°+ mz)q) =0 (Kiein-Gordon Equation)
{?n this we have used:
2
(=p_+ 3-3) (p, + B-0) = -p02+ (P)

which follows from the commutation relations for the ¢ 's for any vector pE]

Added remark:

Here, we have obtained the K.G. equation from the first two equations.,
We could have gone the other way just as well. If electromagnetic fields
are present this method is readily generalized, Pauli doesn't see any
advantage to this apprcach. Kramers developed it in his 2nd volume of quantum
theory on Electrons and Radiation.

To get the coordinate space equation, we will introduce

- _ X 9 . o
P, = =% P=1-



UCRL-8213
Lecture 3
=1%9=

Then we have:

These equatiocns can be written more symmetrically 1f we introduce:
-_— —
T ==0

T, = o =1

o o)

te t =z -1
E‘Ote Jh.at /tll Té l uBgoooj o
Thens

(okpk)w =10 & W =-ng

k 7%y
- 2
(Tkpk)ﬁ z -1 (€L25§; e=-ng .

From the relation:s

WA = A7 (det A)

we see immediately that

. O'T =1 o T > -1
since det 0& = =1 i=1, 2, 3 and det T, =41,

Reflections

There is a fundamental ccnnection between the two kinds of spinors
P, § and reflections in space. We assert that Y>3 , g-d corresponds
to a reflection., So far we have only considered a continuous group, but now

we will consider the discrete group, P (parity)t
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mxa 1219293

"
1]

7
X =X
0 Q

From the Dirac equations, it is clear that if (@ , -y and the

coordinates transform as above, than the equations are invariant. Now:l
= = - 1
: X0 T %3 Y T -1
X! = = WX W™ = X (det X)
_(xlﬂ- 1x2) X, %y
= X (as denoted by Girsey)
and if:
X' = £xa
then:
=1, -1 ~1 =1
@Y =AW .

In the subgroup of the pure rotations A"z A_l and so we see that X and
Xfl or X all transform alike.

The transformation WU =g, ¢H = is invariant with respect %to the
3-D rotationso2 Thus, as long as we are dealing with theories which are P
invariant it is natural to introduce the 4-component spinors as is done by

Dirac., If the invariance is not present, then it is no longer natural.

The Dirac spinors:

we now introduce:

5 fE 0 o 0 o 1
(=4

i
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1]

ij

combined tos

Yk ’uw*
hd g —> 3
B 7Y + .:;, ¢ X i m : D <]
(B) 70 9 x \P/ﬁ
From {A) and (B) we readily construcis
-~ 3 = + 4«:)*’[
5,/30 o ’ JO = const. ¥ :.3
== + div j = 0 where
[~ - ' * -
i = const, (¥ =)
{50,3 0 if the y'’'s are oc-numbers, but it is not necessary if the V-
L

—

are qanumbersof

ot

We can now introduce the Y's:
EZ = &y e
= l‘{l\( 3 ﬁ“’ 4
fv. =25,,
. U277 1]
—y Rarcd 4
Y = c,llgtx = 1<></.:°
and then we can write (xﬁ = 2 t)s
Y ,12.-.;."__ e iy =
K 3 Xk m k 0

and if we lets”

=)
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then we gets
2 ¥ -
P Aviy T - 1 =
axk " Y m 0,

Now we sese easily that

= ST ) W
jk const, (g'ﬂcg)

and
23

o*y

| - . . 2 : N s
L?he P is more useful for studying the Lorentz properties, while

mere useful for studying the realiity propertiesi

i
(@]

Another important matrix iss

X = . : = x.u"}'
5 X1(2¥3§L 5

and we can extend the commutation relations ass
AL 121, o0ey 5
i i) i)
YThe origin of the 1, ..., 5 is a 5-dimensional theory, and will not be

discussed heréﬁ

In our representations

o) i5§ 0 1)
- == ]

joid i
\.0“ 0 i1 0
/s AN

Charge conjugations
The equations suggest defining:
- 3*
g = —wy

H#
s wi

a7

we

|23



UCRIL-8213
Lecture 3

3#
[iheng %pc = +<u(¢c)

Thens

i
<
©,
(¢
(¢}

i
A
1y (=] l

- C C
Q—%_ +<ro_5% $C+ing’ =0
o]

) 2.2 £uind e
<9x o 9§> +imy =0

0
We will show that in the presence of an electromagnetic field, the change
will correspond to e—> = e
Remarks
Majorana spinocr:

¢ =9
VR
Thens

#*
(Cp )Y -muy =0
# .
(Tfkpk) Wy -my =0.

These forms can only hold for non-electromagnetic particles, though m need
not be zero. The equation is not gauge invariant and so cannot represent

charged particles.

FOOTNOTES

(4

The relation between X' and X’l is clear from the cofactors involved.

2 It is not surprising that the full Lorentz transformations do not leave
things invariant since the definition of P on the coordinates is manifestly
non=covariant,

3

We choose = W* Xz since the anti-commutator of y's then reestablishes

the symmetry between X5 X, x3 and XA which was lost on complex conjugation.
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LECTURE ON "CONTINUOUS GROUPS AND REFLECTIONS
IN QUANTUM MECHANICS™ BY W. PAULI

Nctes by R. J. Riddell, Jr,
Radiation Laberatory
University of California
Berkeley, California
Spring 1958
LECTURE 4

- . e : ‘ caya 1
Now, from the Dirac equations we find the relation

| o
[y
o

+
(&N
’-Jo
<

€se l
§1
(&

wheres

1]

. # R > g % -
ety BB S

Though we have used the free particle equations fo get the current, the
latter are considerably more general “han that, Pauli also considers that
N P Qq Iy Q PRy P I
postulating the relations from J, i, is a justification for the definition
of the P cperailon, since thens
- -
e ST SR

The transformation is s%ill not the most general one, since we could

also have chosen as wells

§
=
o

q)ﬂ

ﬁ“ - o eio<

B

where o will first be considered as constant. The equations are invariant
under such a change also. The transformation is a gauge transformation

and all charged particles allow this change, leaving the equations of motion
invarianta2 For neutral particles, the arbitrariness is not so clear,

since then the itransformation is not ailowed. Here it would be necessary
to consider the interactions to fix the phase, however, as the free particle

equations will not suffice,
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From experience,; we believe that baryons (nucleons, hyperons) are conserved.
In addition, leptonic charge may also be, though the evidence here is less cer-
tain, Pauli feels that the former and charge conservation are certain. The

lepton case may be related to a discrete group rather than a continuous one,

in which case the conservation would not be rigorous,

Charge conjugation (again):

2 - 3#* c
We had:” ﬁb = =J)W H “P =+u)¢* o

Now, in 4~compcnent system, we might writes

where
0w /0 -1
E = = ll +1 '
-0 0 \ +1 ]
1 O//
so that: a v % pc 5 M
-1 - L 2 3
- ! * G C #*
\_’_‘3 bl \1).2 9 _4 = ""‘qi °

Majorana intreduced this concept of charge conjugation, and it was later
generalized by Racah and Kramers.

Now: With our present choice of C, we would find that it does not
commute with P ( [%9 &7 #0) but if we make a different choice of phase,

it will, Thus we setg4

. 3*
g7 =1y 77 = 1w
yi=1 §° = ~iwg’

{?ith the cld phases, {C, P. = O, This result is of importance}]
For E, we note that

E=E EE

i
=
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These properties of E are essential. \_Alsog here, E = E, g2 = %ﬂ
The "essential" features are seen in considering the transformations of E.

We lets
wq = Uy, uww =1
which can also be considered as change of representation of the ('ss”
\(.‘IBUY U-l Q
k k
Then we find:

EE-UET ,

and
E' = B' g BV =1,
Now:
¥ =5YE |, ?4:_E-1 v, E.

We would have started with these requirements on E; and then the essential

properties will come out. The latter relations come from:

0 00 0 -io 0 (L
[} -
Yi = glYE :/ 1
\:uJ 0 icy 0 = 0
0 w ioiw 0 0 iwos )
-0 o/ 0 i |-iwo.w O
1 1
Nows
wE0™ = —wie = A7Y (det A)
S038
wo,w = 7
1 1
since
det T, = -1 , o‘l;-_(; .
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Thuss

For zz, we haves

woow ="'O'O 3

Z
which proves the result.®

We might alsc proceed from:

C #* -1—
@ =E W =C Y
{?hen, again, E has simpler reality
transformetion propertieéz
$c - CY: -\PCo

Properties of OC:
+

T

conditions and C, simpler

T=-Cc , cc =1
-1
=z~ Y, E
¢ 4
cz-Et vy =.g'r
4 4
and
\(kT = “CYk C_l k - l’ ooy 40
If we lock at:
~ -1
Y. = ¥X.¥ Y = C
AN ¥ =cov,
From €, we find:
C, C %%9 C Yé?k are anti-symmetric (6)
Y, ¢ ‘e
c " ?kQ are symmetric (1C)
Y =i - .
K 2 (?%X 7& Zk)
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External Electromagnetic Fields

Rule:
~ —)

/___)'*? 31‘1, - 3ieA

rx X

2 .

- + 1eA

DXO /XO o)
A =1A x, =ix .
4 o 4 0

2_+ieA)\ B0 (_i_)@ieA\ﬁq-im'.ugO :
AR

If we do the same charge conjugation as before, we get:

<9 ~ieA ¢c+o~o(_§9§,+ie1’)w°+im¢cao
2 s c 2 (2 o T4 s c
<-dxo ied) g -c af*—leAﬂ-rlqu,O

We will then find that the equations are invariant if o' —» -, OT

1}
A, — =A,. Thus we can truly call the transformation charge conjugation.

" -

FOOTNOTES
1 > 50

%-#O'o_é%?/}\]bﬁ- im,@"—;c XKP*

J
(_%E?O%jg*_ im¢ =0 x g

3*

* 2 *F -4 3. 2 g% .
VYT L bt 9T a0

Adding complex conjugate equation, we get the desired result.
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2 In fact, this invariance leads directly to charge conservation,

3 ¢ = # C = - 3%
c  _ 3* ‘ #
Y ==, \chs-ﬁl :
4 We have,
- oy g
ﬂp = eiA ¢“ - -0 W* elx
s+ 9
qu = elafzj LPC = A)¢* el?\
- P ey e T g
a P ¥.p 12 L0 ) s
@) = -0 we 09
(Wp)c . eixgc . _a)ei(a +2") W*
(L?C)P - w(g*)P el}\“ ) wei(zv - 1) .

Thus, we needs

214 0

e =1 0% A:tg—

]

5
WPy ey =0 k_Pﬂ=U‘l) y= U—l%a
1 -
\(kpk U _q-)'“ +~ mU k\i? -0 LP*E i, J q/)
Yﬂ ! I 1 U'l
w Pt my =0 vrk=ka
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5 (Cont,)
Now:

! LN 3 * %
v By -EUY .

We want to maintain the Dirac equations for pc the same as for y,

however, so we would haves

*
4,CH=U¢)C=UE§J .

Thus:
E' U - UE
-1
EE=UE (") " 2UET .,
Also:
E=UET E'EY =UET,. U E UT=1 .
1
6 We could have proceeded bys
3t
y° =BV
Then,; from the Dirac equation:
Y _ 20 -
Yog v mp =0 3%, Tw —wm=0
# M
* 3
;ﬂ;)° ¥ - 22—-e'y + m w* = C
"X bXA A
Ansataz:
3 3t
,Vc:ELP L]) :E-quc
Thus:
318 o o1 1,0
YE —b%c_-,-)«AE e +nE ¢ 20
and
EYE BTWEB’A’E é-xz"'mw = 0,
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To make this agree with the ¢ equation, we must have:

7 -EYEL vy =55 1
A 4
Thus:
Fzg1¥E ¥ =.gty &E

: ~~ ° =, o 2
Since the Y, satisfy the same commutation relations as the ‘fig

E must be unitary. Nows

F.EYE? y =-E 5 T
4 4
?-EEl¥E e ‘JAZEE']‘\ZEEJ

Thus: E E™' commutes with all 4L Y., and hence with all 16 constructs

of }i“s and thus = const.

e EE T = E = XE But taking transposes

If we let =~ =% 1, Then
—~ T~ TN
~ o~ =
YE=EY =z ¥E so YE=% YE
Also
SR YE=z3 Y E
E, E=E Y
T ———
<. %¥. ExT ¥, v, E LELEZIF L
j i j i
T ¥ E E
Y. Y, = .3
i 4 T %
T —
Y. E=7F 1; E
Y vy E=t Y vy E
Y. 7 = = Y B
35 i s
T —
Y.y, E=% Yy ¥ E .
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For « = -1 , we find 1C independent anti-symmetric and 6 symmetric

matrices. Since this is not possible for 4 x 4 matrices, <7 - 1.

If we choose =~ = +1, the situation is reversed so

ta¢
1
s

Since:

¢l =. vy E (antisymmetric)

we find
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Remark on the signs of the transformations:

As we saw, the phase in the ﬁc equaticn is arbitrary and Pauli now

0 -1
wants to go back to ¢c -0 ¥, wc =w@¥% o= <i ,>

1 0
0 w -1 0 1 0 WL w 0
E = C = "TL'.E = = = «C =
) 0 1 0 w 0 0 =
c -1 - - %
vo = EYy* = C T ¥ ¥y o= ¥*¥pg = ¥ ),
3 = i-ﬁ-l-? ) B = Y)_'_; ? = 1(—; g

Now, in four-component language, the Dirac equation is:

Fx ViV = 0

o] I

Yk ( %§; - 1ie Ak:) vy + mV¥¢ + i -

Here, we have added the Pauli term of the "anomalous" magnetic moment in the

1
L5 Fik Ti Yk' We have:
oA
F. = oy - <L F. =H.,, ... F_=1iE
ik Exi Exk 5 12 37 5 41 1’

The Fik are the fields; ﬁa, . The anomalous moment term is:

1 _ — =
15 Fovn = 1@ -5 - (2.8

@
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where:

-rly'2=ozloz2=i>_‘;3 Bf:fa,

Thus we can also write:

d . - ) A .
(g}z;*‘leAO)W*‘a'(Ta—_k;’leA>‘y+lmB¢

- ueiEQE" + if-ﬁ’iﬂx = 0

In the limit of small velocities, we get an additicnal magnetic moment beyond
the "normal" %n{ﬁc . The latter, anomalous part, gives the entire magnetic
moment for the neutron while the proton has a large part alsoc. (The correction

for the electron is very small.)

More on charge conjugation:

If ¥ - \J,rc, then \ch satisfies the same Dirac equation as ¥ if

either ? e - -e or { Au - -Au f '
i Fix = Fix

— S l
LWe find £ = -E"° T E ; (see footnote 1)

~

() - E B I)E .|

In the Majorana theory {two components):

C

voo= ¥ .

Thus, for ﬂrc, ¥ to satisfy the same equation, it is necessary that e = 0 = p
(no electromagnetic interactions). This theory has been used to describe the

neutrinos recently. l-_We note that m = 0 does not follow directly from the

Majorana theory ]
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We have been using a particular representation of

7'5 = > 'r )4 = » 3 = _0_)

[These signs disagree with the previous choice for ai but to get the sign
for T5 right, this choice for a is necessary.]

Another representation is that using (Ma.jorana representation
Ty Yoo Y5 = real (sym.)
Y, = Dpure imaginary (anti-sym.)
This is not unique. For example, we can permute the 7's chosen
{.Yl STy Yp Tz Ts —erl1 or we might also multiply the Y's by =Ll.

These Majorana T¥'s may be obtained by a unitary transformation, for example:

i -iw

7 -
R g’ - uva vt
1€? 1 w
and then:
g 0 0 o} lv] 0 \
1 2 3
a = s @, = i R a5 = |
0 gy -0, O 0 03/
0 o
B = i 2
Oy 0
*
In the Majorana representation, E = 1; wc = ¥ ; C= -Yh . Thus in the
*
abbreviated two-component theory wc =¥ =V¥. ENb change will appear in

the form of the current.]

The change V —awc corresponds to either the same particle in the
opposite field or a particle with the opposite charge in the same field. Now

to give physical meaning to the transformation it will be necessary to have:
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* c *

Jg = ¥ ¥ 3 1 2N

and the sign has not changed. To continue, it is necessary to introduce the
"hole" theory or second guantization.

In the first quantized theory, the charge density is > O while
the energy density is not. This is not satisfactory since there will be no
lowest state, and so we proceed differently in the second quantized theory.
The technique was developed by Jordan and Wigner using the anticommtatiocn
relations (exclusion principle). [it is certainly necessary to have spinors;

whether one needs explicit Bose fields also is not yet clear.]

Second quantization:

*
We introduce &, a  where:

*
al = (a )2 =0 aa + a a = 1 .
*

If we set N = a a; l-N= aa

N(L-N) = 0. (Exclusion principle)

Then a representation is:

It is interesting tc note that there is complete symmetry between a, a .

Thus the theory is symmetric vetween N, 1 - N.

[ Notation: Anticommutator %.A, B~K AB + BA

AB - BA

Commutator [A, B_]
Here, we have quantized according to the exclusion principle since N takes

only the values O, 1.
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If we now consider a set of a's, we choose:

*
{.a , & g 5]
T s rs

—
[o)
H
-
©
1]
e g—t
[}
o~
o
H
L X
o]
[
*x
———
[l
o

" 1"

a" corresponds to absorption

"a¥*" corresponds to emission since:

&, ¥(... L. cee) = €.V (... 0. ved)
&, (... 0. ) = 0
a (... 1. ) = O
a W 0 ) = e v 1)

The €r's depend on the choice of ordering the r's, since

and
E
= (-1)F1

Ny

er(N e, N,

1 - cel)
If we change the order of the states, the €'s will be changed though it would
only correspond to a unitary transformation. No physical results can depend

on the ordering.

We now introduce the complete set of eigenfunctions in a box V:

{ ar(E)) upr(l?) ei(k'X) + br*(ig) vpr(?) e-i(k.X);

1
Vlx) = ke B

where:
[__—-—-——_"I
/
- X -ot, o = + Y Eg .

=l

kex =

*
We have separated ¥ into two parts a, b (or u, v) because of the double=

3

valued nature of w. We now have left the two possible spin choices (r=1,2).

The u's and v's satisfy:
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(17« k +m) w(B)

I
o

il
@]

(-1 1« k +m) v ()
or:

@.x + Bm-m)ur(f)= 0

(@.- %X + Bm+w) v\(-K) = O.

We can easily verify ’t:ha.f:.:4

]
(@

W(B) v3(-K)
V(B uS(-E)

while we choose the normalization of the u's so that:

0

%
u'(K) o¥(®) = &
rs
¥*
ViR VUE - 8
rs
FOOTNOTES
1
1
P Ty T, = [F12 Ty Yot s ¥y V3 + Fpg ¥, 75
R TNy T Tyt Ty Ta Ty
-
= iz, H, + ... + aofJ
[1 3 V3
Fiy = ~1EB; 3 Ty =10 Ty V=125, Fip= Hy
2 N N -1 1 i -im 1 0\
vty = 3 _
-iw - 1 » 0 1

Footnote 2 cont.
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/1 - -0 O\ -1 1
' 1 |
@ =3 | = )
\ 1 ®» 0 o/ =3 =
.. \ /
4 - ~
=g - O =10 + 1C A
1 R - =
= = ~ ~ sincew cw = 0o .
2 L= = - —
i = ig -0 = 0
Thus
' - —. £
\ o) 0\ . 0 i, , o3 O
[ = 3 Q, = ’ 0/ =
L 0 -0 2 g 0 3 0 -0
1 105 3
, 0 -1 0 G \‘
B = = -7 2
~iw 0 02 0 /

and we get Pauli's choice by changing the sign of all a's, B .

’ Note that the (*) appears on the operator associated with the negative
frequency, while that without one goes with positive frequency. Thisis
alsoc true for \Ir* . This is closely related to the "hole theory" of
Dirac, since a 1is related to annihilation and a* is related to creation.

4

Proof':

1. (@-F + pm-o) (k) = 0

(@« % + Bm+w)vr(-—’)= 0

* *
2. (&#-R_) +B m+w) v(-kK) = O.
Multiplying 1. by v (-k), and 2. by -u (k) and adding, we get:
*
2( v (-k) v (K)) = 0

23
while, using 1. for ut s v we get nothing of interest, but we may choose

w'(K) and u®(K) orthonormal.
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We can introduce projection operators (Casimir) via:

Pi® = = uJ(®uf ®"
r=1,2

P =z v IR v R

po 1,2 P o

From the orthogonality relations:l
PI(E) + F(B) = 1 .

Also:

Since the P's are also constructed from u's, v's, they are solutions of

the Dirac equations:

= = -

+
(@K + pm F )P (K) = 0O
and we can thus write:2

P (%) = £ @ -

w
+
w
=
+
g

1
an
Specifically, we can also obtain:

P7(K) uw'(K) = © and PHE) (X)) = u'(¥)
P(E) v'(-K) = 0 P(K) v (k) = v (k) .



UCRL-8213
lecture 6

<li=

Remark on charge conjugation:

Our choice of v, u gives a particular connection of the charge

conjugation. We have:

¥ = E¥

Now we can choose the v's as the charge conjugation states to the u's:

* 4 ¥*
V®)S = Eu(K) (E®° = EVE,
[ Here, the k's are the samei
and then:3
a,c = b
r = °r
bc = a °
r = °r

We now pass on ‘to the invariant functions, related to the anti-

'cdmmutators and the vacuum expectation values of free fields. We have:

* *
Za y & } = & 3 { b, , b } = B
T s re r s rs

while all others are zero. We can generalize the use of these relations by
considering the vacuum as the state of lowest energy. Then a, b must be
considered to be absorption operators.

Definition of the vacuum:
a.r,0> = 0, br’0> = 0 .
Thus for any set of operators:
*
cee @ afo> = 0, etc.
8 T

Thus, from the anticommmutator:
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*
<i() , a_a l O;> = B
T s rs
*
<olbb/o> -5 _ .
: T s rs
We will see that then | O‘> corresponds tc the state of lowest energy.

Iet us now define the energy-momentum lL-vector. For this purpose
we will meke use of the Heisenberg rule relating cperators in a c-number

theory to those in a g-number theory:

~
. * . 1 * ‘ * . .
c-number: ‘l’p @m ¢f0 - 3 [ﬂf@/\k - wﬁw ] :  g-number.,
This rule makes expressions in the fields more symmetric, and is especially

importent for the current as will be seen.

Thus we introduce:

_ 3, 1%, ¥ ¥
P, = de s 15 - 15 V)
1 * * 1 * *
=r=i2 %a)[g(ar a,r-arar)+-2-(br ‘br-brbr)],

using the orthogonality relations of the u's; v's. Now we will interpret:

* + * -
a a_ = N_ , b, b, = N
T r r r r r
and {ola,a o) =1, (olv,v o> = 1.
We find:
P = = o) w[N*(E’)+N"(I§*)-1] .
° r=1,2 X o o

[Pauli feels that the infinity associated with the (-1) is & real one, and
indicates that the formelism is not yet entirely satisfactory. The fact that

particles are never really free does not give a sufficlent explanation yet,
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either. One begins tc doubt all volume intvegrals ]
For the momentum:

P

51D, LW

z Z?5N+(B+N’(E-l
r=1,2 ¥ T T )

In this case, the {=1) isn't such a problem, since we can sum ¥ over the

angles first and then over | X ‘ . In this way, the sum 1s set = O. Now:
- —
(P, i Po) = P ( = Le=vector)
and '
- 3, Lyt 1 1
Py = j “x 500 Tx -1 % V)
where X, = 1 t. From the commitaticn relations:
* *
[N+,a.]=-a H [N+,a ]:a
T r T r T T

[Nr’brj r

and for any operator, f, we have as a general property of the Pk:

e t] - B

Here, we must restrict f +to be an implicit function of X and explicit

i)
§
o'
-
—
=
H
]
“a
o'
H
*
—t
|
o’
H
F3
0

function of the field operators only.,5

Again using the Heisenberg rule, we find:

~J

(0 = =G v - ¥RT)

and using the charge conjugationé
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and

[_'I'his is more satisfying than the c-number result,]

Irn addition:
e = 5d5x-§-(w*w-w*)
e = = FZONYE) - n7E)) .
r=1,2 k T o

Thus the a's describe particles of + charge, while the b’'s descrite
particles of = charge. Thus we have reached our goal of charge conjugation,
in which the vacuum is the lowest energy state. This would not be so simple
if we had used commutators instead. Feymman suggests that we would need to

work with states of negative prcbability if we ha,d. chosen commutators.

FOOTNOTES

r r
Suppose: fa(ff) = =z { e, ug (K) + dr A (ml?)}

Then: + r
P fU(E’) = T, ug (%)
= . r
P fc(ii’) = = 4 v, (-k) .
2 Since (@ -K+BmFa)ad .k + ﬁmra))=(k2+m2=m2)=0
u'(¥) u" (K)
and (@ % + Bm) = W

v (-K) v (K)
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5 This gives
* * i o
a_ (m ur(?) o1 kex

i}

M
WM

=

YV =E ¥
ﬁr=l,2

+ br(l—g) vr(m* ei kex

br*c(m vr(?)c e-i kex

+ arc(-]-g-)) uz'(E>)c ei kox}

Here, we have used the properties:

> - ~ -

7 -7 B *rh=-E‘rh_El

from which ~ ~
g - EGE " 8 = EBET

Then, since

(@-F + pom-o) u(E) = 0
(@ -k + Bjm-w)ur(ﬁ)* = 0,

* *
but Y =E V¥, so if v (K)¢ = E v (k) ,

)

@.% - pm - o) V(B = 0

which is indeed the equation aiso satisfied by vr(l?). We proceed in
the same way for u (k).

L

For example:
¥* * *
[a. a_, & = & @& & = & &a g
T r’ T r r r r r r
—_—
1l
0 since a = 0.
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FOOTNOTES

*
> The relation follows immediately for V¥, ¥ end then is readily generalized

to arbitrary functions using power series.

(2 ¥] = 5% 5d5x [w* %k - %;%k w*,w]

But we will see that
;w<x>, W(x')} = -1 8(x -x') .

Now, Pk will be invariant from the equations of motion so we may choose

the times all to be the same. Then we will also see that:

(%, 0) = 17, s(3)(2)

S0O:

§w, v Th} = 33 {~w, w*} . 33,
Thus:

[pov] = -3 OG- EEL S o 1R
Also for W*:

* 2 * ;= * * > (3) "’_"’,
v =) B§$k V@ = -V E) V(R 32*; + ¥ (x") BsaXR(x x')

and we again find on integrating by parts:
*
[, v'] = -2 %i-

k’ 1 ox '

These results are necessary, according to the definition of Pk

as the infinitesimal translation generator, since then P must satisfy

such a relation.



FOOTNOTES
Proof:
i ,=c c c ~ =
weset §. = 3 v - ¥V r ¥ ).
Now:
* -] - -] * + ¥*
© =Y = TRy = T
*
c ~s
¥ =CT1'_W
S0
~ *_MEI 'll!
¥ oeR e TN
but
=] -~ "C\/ c
C rkc—-‘rk = =
¥ c
YkC = - Tk
¥ C c
Ty T
therefore:
T - Cv.
Then:
, 1 sl = = Rl
Iy > (¥Cr, C7 ¥ - ¥ Ty C ¥)
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Anticommtators and Vecuum Expectation Values:

We will now define:
§ (0, Tlx) | = 18 - x0)

[ The (=1) is purely conventional;] It is easy to calculate this quantity

because of the assumption of free fields.

Similarly:
T (-~ - - ; 1
QRORACY >o = = 5{(s” +18),

— 1 1
t - -— - .
(T x) 4l >y = 5 (S = 18)g
These functions are all functions of x - x' only as a result of the invariance
under the translation group. That the anticommutator is a cenumber is a

consequence of the assumption of free particles.

Now, since S, S' as functions of x are given by V¥'s:

3 S
(rgp + m { o1 = 0
while
S €«
(r%-m)—o
Sl

where the "&' indicates an operation on the x' associated variables. For

t=1%", we have:l
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s(%, 0) = i, (3 (2

If we do not work in a volume, V, we can write:

(3)(z) . L §d5 1 B
5 (§5 (5;53—- k e s

which can simply be considered an abbreviated way of writing

£{0) if 0 is inside V

S Ox 2D 5(5)(;) _

v 0 if O 1is ocutside V.

For the free particles, we have thus introduced singularities in the theory
which we may expect are related to the zero point energy problem. It is to
be hoped that for interacting particles we will no longer have such singular

behavior.

Now, if we write:

s(x) A
= <§ g% - %) (Schwinger)
sl(x) At
then A
(0 - m?) = 0 .
A}

2
Now as t — O, we then have a boundary condition:

Ax, 0) = 0

2@l

From this boundary condition, plus the Lorentz invariance of A,

-3 .

]

we shall see that it will be singular on the light cone, so that some

"epsilantics" are necessary in studying %% )t—ao . From the differential
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N 1 i 1(K-X - wt) ~i{K-X = wt)
ANX, t) = = 3 T e - e
2(2x)
01'35 - —
3 ikex
AX, t) = = = ik o sinw t
’ (2x)° ®
We will also define:
- . T
Al(_i), t) = = 3 S dik et B st s
(2n)
and we see that:
AR, t) = ANE, -t)
A, t) = «AlX, =t) .

There are some properties which will play a role later, and which

we will later generalize. We may also write:

1A = 135 ate e(ko) el B X (ke + D)
{or)
where
+ 1 k > 0
€(ko) = ° e
-1 k, <O

If we carry out the integration on ko first, we readily see that ‘A is in
agreement with the previous result. In this we use:

\“ & Zo)

) g(z) 8(£(z))dz = 220 m
where f£(%) = 0. [The seemingly "harmless" factor e(ko) in k-space makes

for a large change in the x-space, and vicenversa..]
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Similarly:

At = 15 5dhk et BX sk 4 md),
(2n)"—5

Let us now consider the combination Al + 1 A, which occurs in the

vacuum expectstion values:

1]

(=) Wx')) - % (st +18)

- -ir S -w e n)

Al + i A has important analytic properties. We define::h
21 = Alsia = =2 jdhk o(k ) ef B'* §(kex + n)
+ 3 o
(ex)
where:
1+ elk) +1 s > 0
= 0

0 k £0 .
(o]

If we consider the 3-dimensicnal forms, we get:

1 5(131{ 1 X% clot

21 A = e
+ a)
(21)°
and, carrying out the angular integrations:
o0
214, = 2 1 S kdk  gin kr et T
2 W
(22)” ¥
0

This integral is not properly defined, since it is not properly behaved as

k » € , One device for defining the integra.l to take the limit:

lim j ooex eaew & L]
€ -0

[We could also consider the integral as a contour integral and then choose

C in an appropriate wa.y,]
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A# is evidently a Tunction of only cne variable. This is a consequence
of the ILorentz invariance. (A, A" are invariant also. The e(ko) is

always invariant for time-like points, though it is not for space-like ones. )

We define:
52= r2=t2=x.x
and then: oL
21 A" = 12 :‘2- 5 ——-lfg—k-::g sink s ,
1
(2n) 5 'fﬁ + m
and then:5
+ m (1)
21iA i Hy (1 ms).

For space-like pcints, we use the Lorentz invariance and then for t = O,

r2 = s2 ; since we may always choose a reference frame in which %' = 0. For

time-1like points, the situation is not so simple. We choosge:

1 r2 = t2 space=like
8 = + i‘1t2 - r2 forward light cone
e 1 /t2 - r2 backward light cone.

Now, since the integrand contains only positive frequencies, we must consider

the integrals as analytic functions of s {(Wightman). This result is more

general than the assumption of free particles. LSince Ay A} have bcth

positive and negative frequencies, they do not satisfy the analyticlty
reqpirement.? If 4§+ were to vanish for space=like points, for example,

'

the analyticity requires it to vanish everywhere.
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Here,
- 1 r,— 1 kex
w(x),w(x')} = —=— £ £ Z b3 [a(i’)u(f{)e
§ P Vir1,2 ¥ r'=l,2 ® r P
* r,— =1 k°x‘] [ K riepy* -1 k'ex!
+ br (i?) vp (k))e 3 '(k')(ru)o'a g’ (kvl
=, r! * i k'ax'J
+ brv(k )(Yh)avc vo-l (1_{-)) e e
Using:
= *, =
§ ar(k )5 8 (k')} = B 5(3)(E)- k'), etc.

(The 6(3)(k is really a Kronecker & since we are using a V.
E

we get
{wp(x), '\Fg(x')} = -—Vl— r=§,2 % [upr(l'«:') ucgr(l?)* o1 ke(x = x')
+ vpr(k vg.r(i3* emi kee(x = x') ] (Tu)cqo )
If we now set t' = t, we get:
(D, TG = 4 B FF)

where we have the completeness relation of the u's and v's!

% { upr(Ej ucr(E3* + vpr(-E) vcr(-iv* g = 8 .

r=1,2

This can only be done when t = t’.

But, in a volume, V,

5(5)(;3 - _%_ 5 ei Kex

80:
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1 (Cont.)
V@, @ - (), 8PNE- )
prt’? Ta 4/ po '
The completeness relation is .,
p* 4+ p” =1 :
o po folo]

These follow from:

P

lim 5§ /1 d - D ) _ (5)-*)
(

Since the v's and 1 are independent, we see that the boundary condition

is satisfied and required.

Sa:? A%, 0) = 0 and AX, 0) = 0 (from "m" term).
5 These forms are easily obtained. From the differential equation
e - — L
AX, t) = ‘S ax z\f+(k SLlEX - at) | £ (K otilkex *“’t)J
and since
L= =
o - -8R -\ | e® -2 ® | (cw)elEE,
ot + -
t -0
f+(E)) -t (F) = ._'15_ .
(2 n)” w
Further R
ANx, 0) = O
50

£(&) + £(8) = o

from which the result follows quickly.
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FOCTNOTES

A = A + A

Al = i(A+ -Ad .

From this, we see that S° indeed satisfies <:[¢(x), W(x')_] :Z .

Calculating the commutator, we get:

<{:W(X),'\F(X‘)]>O = -i(s, - 8) = -8

since the vpositive frequency psrts satisfy the same relation

1

gar(?), (@) } 5, 8(F -2

* - ~ - -
{ ' \ = 3 o= ' °
<{ar(‘18), a (K )J > 5. S(E-FK)
BEowever, the negative frequency parts come in with

<{b*r(f)’ br'(?’)]>o = - 8, 8(K-E)

2 We have (Watson, Ressel Functions, p. 183, Eq. (1k4)):

K (x) = 5 o8 (xt) ay
5 (2 + 1)

oo

!g + sin(xt) 4t
- hr———————— ) 4

[}
X (x) =
° 0 -{t2+1’

But (p. 79, Eq. (4) of Watson)

K (x) - Kl(x) .

Now setting k = mt,
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5 (Cont.)
[se) o0
j—}%—k—é- sinks = m 5 ——E?-—— sin{ms)t
o k“ +m 0 t° + 1
= mKl(ms).

However (p.78, Eg. (8) of Watson)

- % Hl(l)(i ms).
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LECTURE ON "CONTINUCUS GROUPS AND REFLECTIONS
IN QUANTUM MECHANICS" BY W. PAULI

Notes by R. J. Riddell, Jr.
Radiation lLaboratory
University of California
Berkeley, California
Spring 1958
IECTURE 8
We will now define functions of positive class. We will restrict

the discussion to lorentz invariant functions. Then:

F(x) = = Sa“k ok ) of=k°k) ot kex

(2n)?

The © insures the presence of only pecsitive frequencies, but F will only

be lorentz invariant if

o(=k°k) = O for kek > 0. { space=~1ike)
We have
1Az ) = —-5-3 (§7duk olk ) B(kek + Ae’ kox
(2x)
where
o= mgo

We can obtain F+ from A# by introducing a "spectrum" of rest masses.

Then: oo

F+(x) = j; a o(n) 164(x; Ao
0
[It is important that only m2 appearsoJ Clearlys:

if F{x) is in the positive class,

then F(=x) is in the negative class,
*

and F (x) is in the negative class,

%
50 F (=x) 1is in the positive class.
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Now, we go back to the problem of the analytic continuation. We
have seen that for functions of positive class, the function will be analytic
under the change:

t>tel® ) e >0 ,

since -1 kot -1 k.t - ko ©
eko-iekolco

The integral will then still exist, and hence such functions can be continued
into the lower half plane. Functions of negative class can be continued
into the upper half plane, and those of mixed class cannot be continued

at all.

Side remark: We are here reminded of the canonical ensemble, since there
we also have e’E/kT. Thus © - %%. Pauli doesn't know of any deeper
significance here, The analytic continuation may have physical significance,

though he doesn't know what it is.

The continuation mey be done in an invariant way:

X 7 %X =19y
where

(e ) <« 0, o, > O (Forward cone),
and then

1 kex 1%kex + ko0
e - e .
— >

Now, (k.8 ) < 0, since k.8 = k:8 =~ koOp , and

kK > | B, o, > |81 .
In this case, the canonical ensemble is extended to a distribution in

momentum as well as energy.
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Now, let us consider the analytic continuation. The singular points

(1)

of S and H, (s) are those for:

t=r1; t = -r: s = Q.

If we follow t and s, we will obtain the continuation of 64 o

| t- pane. 2 plane % S- frtans

F

> e g\ i\._q4r_,

1
s = \f 2 - 42 (space=-like).

K
4.

e
Near the singularity, we choose t =1r - €e , to remain in the lower half

plane. Then
32=r2-t2%2r€eie 0 &£ 8 «n
5 = \/2 T € ele/2 o
Thus, in the forward light cone s = + i} t2 - r2 . For the bhackward cone
we findl
2 2

For negative class functions, we take the conjugate definition. For the
mixed case, we can do nothing.

We now wish to apply this analysis to A# :

21 8, = =E§-§ Hl(l) (ims) .

Now
B, (N(z) - 52 + 1h(2) ,
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. ] z2

J (Z) = ‘2 gl - + o0

1 2 geagz

2 VA 2
N (z) = Z(log3z + 7v)J3,(z) - = + F.(2)

where Y is Euler's constant, and Fl(z) is an odd function of 2z with
no singularities in the finite z plane. Everything is uniquely defined except

for the log% term. We find~
(1) _ By 1y . g2 r 1.1 {
Hy (z) = (1« kn = 7‘:)Jl\z) + 1= {([ 5+ 1) Jl(z) ~E+§Fl(z)f

where

z = rei(&n+p), 0 £ g <21 . n is an arbitrary
integer, determined by the Riemann sheet which 2z is on.

Thus, the only unknown quantity is n. To determine it, we see that

if x 1is space-like, =z = ir, so

- X Y YR o 4
¢ = 5 » and > Jl(Z}, Ll(z) are pure imaginary.

Now for space=like surfaces, A =0 and so

)
}.J
>
1
>
1

pure real,

sc that n = O,
Now, in the forward light cone, s = i l s! , and so z = =~ 's} ;

ﬁ = i, Thus we have

SO0 - ses o ead { Gk cn s e

+ ’if + —g— Fl(em ,sl )}

214 = ﬂ}_;n—sl_ giJl(m [s] ) + N, (m [s] )}

SO
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and

.

Similarly, in the backward cone s = = i fs! , z = ‘ s!

21A+=nl"T-§-|- {-iJl(mls{) +N1(m\s|)} :

Now we can obtain the A and Ai by taking the real and imaginary

parts of 2i 4 = Ai + 1 A, Thie must be done with care, since the -%5

s
singularity must be defined. The A (sg) will generally occur in integrals
+

over se, and thus we will set:

t=-plane se-plane
— - k _—< /\_ - |
— e T

where we have chosen t in the way that preserves the analyticity of A;.
Thus, at the pole in the backward light-cone singularity, we get % the
usual integral around the pole. On the other hand, if we integrate 32 in

the increasing direction, we obtain = % , since we integrate clockwise. Thus

we find

- 2 (%) - ) ix 8(sY)

L
2
S ]

where P indicates that a principal value is meant for the integration.

Thus we obtainh

e(t) [-Tg}r- Jl(m [s]) -2 6(52)] 2 £ 0

be A =
0 s2 > o .

[Here, we have obtained the "famous" e(t).]

Now, if we go back to the F+(s), we find for the singular parts5

in 52:
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2 2

o0 )
(2::)2 F+(se) = o s '5 o(AN)°An an + S S o(N)d\. + convergent parts.
0 s 0

If we divide F+ into its real and imaginary parts:

F+ = Fl + 1 F ,
6
we find: oo g 1
2 1 2
e(t) [- 8(s°) S p(A)an + 5 Sp(}\))\, an + &(s )
ha?F = 0 0 5
(s° < 0)
0 (s? > 0)
[In renormalization theory one assumes that
[ ]
f, 4o
2
m
0
= 2]
is convergent, though J o(AM)A = O , and one then subtracts the
0
divergences. T J
FOOTNOTES
1 2
t=plane s «~plane s=~plane
oy n
—% oy A
—q—-v—(—— -« iu - 2 F\
t=or+eel® saf,:;zree'iej s o~ Vare e

15/5'

2Since ﬁnz= [nr+i¢ if z=re
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FOOTNOTES

SPY_ {-Jl(-mlsf) v 22 [adsl s paym )

+ ’i, + %Fl(-m)sl)Jj

+ Y)Jl(m Isl )

1

e {Jl<m;s,) | iz L(En

o~ 1%{- (- 21 (t) 8(52)> .

O
J an o(n) 1 A+(x; )

F (x) =

] 1

- bgd}\ o(n) ’.-8% Hl( )(ims)]

But:
. Hl(l)(ims) = i( = log s x ism :rizms> + regular perts
80

m2 1 1
F+(X) = 2 dn D()\) 'é;'é log s + ;5 —S-é'

(m2 = A) .

This comes immediately on expanding J 1 in the expression for A, and then
using the linearity of the relation between A+ and F+.

See, for exsmple, H. Lehmann, Nuovo Cimento 11, 342 (1954).
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IECTURE 9

Now, we have seen that

4 i ko
F (s) = (;)5 Sd k o(k)) o(-k-k) ol KX
_ 1 T (1)
e o(n) YN B (1 /N s)an
0]

There is a possible generalization of this form if we allow an indefinite

metric. There could be a complex value of the mass and the analyticity would

be preserved. (xa = m?) We may set:
m = m + 1p m >0
o o
k:mK KK=°"1
" m (TR

where Ku has the ordinary reality properties. We may add a finite number
of terms of this type and still preserve the analyticity theorem of Wightman,
since Hl(l) is an analytic function of m. If we have a specific F+,

we have terms added of the form

*

2oy (D) (ins) 4 B(m) g B, (M) .

F+(s) = =3 A(m)
m

*
It F+ has a reality condition, we may find B = A , though in general this

would not be necessary}
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Let us now go back to the case of free particles. We recall that

Qi) Fa(x) )

1 .
-5 (Sl + 1 S)aB (x - x')

(st

=3
'U)/\
™
<
Q/_\
K
O

1
(o] B

-1 S)aB (x - x")

where
= T — - n>
1 dx A}
Now we wish to consider two kinds of operations: Charge conjugation and

reflections.

Charge conjugation:

Now
c -] - -1
¥ = C ¥ = =-¥C
v o= cy
+ -1 -~
and CC = 1, C Yk C = = Yk . From these relations we find that

Qfac(x) TII-Bc(x') >O = Q’a(x) Wﬁ(x') >O

NSACORRCODEERGACORACOD IS

These follow from the properties of the C and S:2

<c(sl Fi s)c"l>0£t3 = (sli i S)aa. (-x).

These relations may be generalized to the case of & mass spectrum as:
Lo T(x) Dy = = {(r § g Fls) + By Gls)
a B 0 x ‘op ap

@) wy) >

"

(r 3 )y F) + By &(s7)
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*
Here s appears as the variable in the second equation, since as a function

of x - x', the function is of negative class. Thus, for the analytic
continuation to apply, s* rather than s appears. Here, even with this
generalization of the commutation relations, the charge conjugation invariance
holds. The minus sign in the first relation is conventional. TIn general
there will be no relation between (\I!a(x) WB(X') >O and <$B(x’) Wa(x) >O’
but here the relation is so chosen that charge conjugation invariance occurso3
There is a reality condition on F(s), G(s), which requires that they be
N

real, for real s.

Strong reflections: (Equivalent to C P T).

We now go back toc the case of a single free spinor field, of mase m.

We define the strong reflecticns so that
‘ (%) (=-x)
x = @ .X i X = w J (=x .
3y 3

[_Under P, the space components of ju change sign, and so do they under
T. Thus P T gives no change, while C changes the signn]
We will now set:

ic

¥ (x) e 15 ¥(=x)

]

=i -

¥1(x) -e W( ~X)r5 .

The value of « cannct be determined in a gauge invariant theory. This is
very similar to the usual space reflections.
[_In the Majorana theory:

a = —%— since wc = ¥ a]

We have a further rule to be considered. We have
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px) = E(Fr v-vT ¥ .
i 2
The above transformation in V¥ will only be correct if we add a third

operationel rule for computations.

Inversion

s __j; |~—|_—l ! = - -
3, = (v V- v V) 3, (=%)

where we have changed the order of the factors, or we read from right to
left in the operations. The reason for this inversion is evident already

in the equations of motion:

. of
1 [PIJ-, f_] = -3;{- .
u
The total E must not change sign (and hence P must be invariant) because

E DE

. Thus:
vac.

from ILorentz invariance. Thus

g of! of!
i[Pu, f] = -‘5;(:, = ax—u = -i[Pu,f']

Thus
/

{Pu,f] - -[Pu, f']

This can be brought about by the change of order.

Iet us consider the effect of this transformation on the vacuum
expectation value of the product of two free field operators. According

to the above prescription:
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Q@) Fyx) >0 = (Tl 100 % .
&

- (re)ggr { Tpr(=x) ¥ (=0) B (¥5)g g

_él. !:y5(s:L - 18) 7y ]aB (x' - x)

But:

Ts 5,(=x) Y5 5,(x)

- S(x)

Ts S(=x) Ts

since the 'r5's change the sign of the 1 term in the relation between
S, A and the (-x) changes it again. Further Alx) is 0dd in x, and

Al is even. Thus

/
(igx) Folx) D = =5 (S5 + 18)g (x - x)

Thus all of the functions (anticommutators, etc.) are invariant under the

CP T transformation.

FOOTNOTES

1
References to this general question of analyticity:

A. S. Wightman, Phys. Rev. 101, 860 (1956);
Wightman and Hall, Kgl. Danske Vidensk 31, 5 (1957).

2 We have

{4, (=) ¥°(x1)

— ' -1
cﬁsv <Wa1(x) \VﬁO(x ) >O ca'a

1 9 1 , -
= - CBB' §<r U -m>B'a' (A~ - 1 A)(x -x)Ca,a

- -3 & - @)y (&1 + 1 A)(x - x)

= -3t 18), (- w)

1
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2 (Cont.) i
and similarly for <Vac(x‘) wac(x) >O . Here, w¢jhave used the fact

that Al 1is even in (x = x') and A is odd.

3 We see that

20 T2 Dy = =g (T () ¥ () Dy G

= = Cgg, ;((T 5?7 )B’a' F(s*(x' - X)) * SB’a'G(S*(x"X)t)gca‘cz-l

But s(x' - x) = s*(x - x'), since | s(x' - x)[ = | s(x - x') | and
the only changes necessary are to change the future cone into the past

in going from x' - x to x = x'. Thus

e, d
(\V?C(X) ¥ (x') >y = - {(T 3% Jap T(3) + g G(s)} Q.E.D.

Note here that we assume ?, t are real.
There is & reality condition on F, G. We have:

<‘¥’a(x) ?B(X‘) >O = <¢a(x) ¥ '*(x')>o(’fu)a'a = - {(T.ga;‘)aﬁ F(s) + 8(18 G(s& .

In general, V¥* will be the "adjoint" of V¥, and we will have

(o | ¥ |B) = <B!M\A>*,and (aB)" = B A" .
Thus, here:
(o) ¥, X)) D (m)ggr = g (x1) 4, () Do (g

SRR (G I CO R G(s*>)7 (1)
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FOCTNOTES

4 (Cont.)

But, since Xys Xp» x5 are real and x), is pure imaginary:

- g(yusg; )Ba F(s*) + Gaa G(s*);

- e F(%) + B G(is*)}

{

SO

F*(s) F(s*) and a*(s) = G(s¥)

i
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IECTURE ON "CONTINUOUS GROUPS AND REFLECTIONS
IN QUANTUM MECHANICS" BY W. PAULI

Notes by R. J. Riddell, Jr. and Henry P. Stapp
Radiation Laboratory
University of California
Berkeley, California
Spring 1958
LECTURE 10
Now we consider the state vectors rather than the opera.torsol We bear in

mind that in constructing expectation values we have to deal with two kinds of

state vectors, one which appears on the right and one, on the left. Thus we have:

*

(el ®lvy = ¥, Y
In the case of a positive definite metric, we choose @* as the conjugate complex
of ¥. More generally, it will represent the adjoint.
Now, if @ is the unit operator, 0= 1
<£l| b'> = ﬁa* ib °
To compute expectation values, it is necessary to have a connection between the
bras and the kets, though the eigenvalue problem can be solved independently of
the correspondence. At this point, the bras and kets can be considered as completely
different types of objects. Now, with Schwinger, we assume that they are in fact
objects of the same type and that the same vector can be either a bra or a ket.

*
The ket vector that is identical to bra vector Wa may be denoted by

* *

\IrE = ¥ YB. = ¥ (10.1)
Assuming further that the order of the vectors in a scalar product is not significent
we have

a|by=<KB|z ) .

We next define the "transposed operator," GT , by
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Then one easily obtains the relations

<a | & o> <’E [@E | Z{) (10.2)

P\

(A 13)T = BT AT, (10.3)

* .
If we have a metric preserving transformation then U U = 1. In the general
¥* *
case of an indefinite metric, we still write UU =1, but U is now meant to be
the adjoint (rather than conjugate) and U is not umitary, but rather "pseudo-

unitary.” Then if we have;

' LA * %
ﬁa = U ?a ¥ a ¥ Ua
and if;
] *
e =v &u |,
the expectation values will be preserved;
¥ ¢ *
¥ a ¢ ¥ a ¥ a o qa °

It is possible to combine a metric preserving transformation with the transposition

operation. That is, we may generalize the relation (10.1) by setting:

* * *

?E E ?a u , ia. = U .L[’a .

Then if we require:

G|ty =(b |e]a)

% v & U

we find;

and , - -

AB = BA .
We have here defined a transposition operation which will be used in the definition
of time reversal. This will avoid complex conjugation.
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Remark: Wigner introduced the concept of "anti-linear operator" to discuss time

reversal.
Linear operator: OKcl ¥, o+ e WE) = ¢ -4 ¥ + oo, O,

IS v *e
Anti-linear operator: &(c; ¥; + ¢ ¥, = ¢ &Y+ o ¥,

Tet us now return to the strong reflections. [The CPT inversion is
identical to strong reflectionsol

One must always include the bra — ket inversion in some form to get the
time reversal, T. For CPT inversion, we have taken;

vi(x) = &% v W)

and'
3, (%) = =g (=)

In charge conjugation,

wc = c-l -‘Tf = '-'ll? C-l
¥ = cv = =¥C .

We want to require that CPT have the same form for charge conjugated quantities,

gso that
vix) = & T ¥ (-x)
Then we find> o = %. Thus we have fixed q. (eia = 1)
Thus we find:
vi(x) = 17y ¥(x), Vo) = 1w ¥(x)

We wish to consider now other classes of fields; specifically, we want to show
that the transformation of quantities under CPT is already known from the continuous

Iorentz transformation properties.
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We have used certain assumptions in the development:
1. The vacuum is the state of lowest energy.
2. Spinors satisfy anticommutation relatioms.
%. The theory is lccal in character, [The current is a local quantity.
The momentum, Pu’ is not local, and behaves differently. |

Let us consider, for instance, a quantity like:

1]

R{x)

—

AWx) ¢ plx) - 20 F Wx))
where V¥, @ transform in the same way.

If:

¥ = Y, oF Y, Ts R = vector (V) axial vector (A)

scalar (S), or pseudoscalar {P)

& = 1 or Ts R

antisymmetric temsor {T).

o = %(rup“@ 'ru) R

Now, if we introduce:

ye(x)

1vg V(=x); vi(x) i W(=-X)‘r5 ’

Br(x) = 1y Hex)s  O(x) = LB-x)vg s

and we take the inversion intc account in computing R'(x); that is:

R'(x) = 2(8'(x) Fvi(x) - vix) For(x)

then we find the rules for CPT inversiomn:

(V, &) (x) = «(V, &) (=x)
(s, B) (x) = 8, P) (~x)
T (x) = +T{=x) .

This is in accord with the behavior of the current or a coordinate;
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For the energy-momentum vector, however:

_ 3
P, = 5dx Tu(x)
so that Pu has the properties of part of a tensor under CPT. A scalar can be

made from Ty9= S.
The theorem of CPT invariance was first formulated in a clear way by

Luders.

NOTE: Pauli's Rule of Transposition and CPT

(1) In order to understand Pauli's prescription let us first consider
time reversal in ordinary (first quantized) quantum mechanics. We suppose that
the operators q(t) and p(t) represent a possible solution to the equations

of motion. That is,

[E(p(t), a(t); +), q(t)] = - %ﬁ

dp(t

-1 =5

"

[ 5(p(t), alt); %), p(t) ]

where
[(8), a®) [ = -1

In clgssical mechanics the "time reversed" physical process is defined by the
equations:

a'(t) = qo(-t) ~ p'(t) = -p(-t) -
For a large class of hamiltonians this "time reversed" process will also be &
solutioﬁ of the equations of motion.

In quantum mechanics, the operators defined by the above equations do not
obey the commutation relations. However it 1s easily verified that these relations

are satisfled by
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- (~t)

a,(t) = q'(-t) p,(t)

where here, as throughout, GT represents the transpose of ¢.

We may now inquire whether these transformed operators are slsc solutions
to the (original) equations of mction. If one takes the transpose of the original
equations of motion for gq(t) and p(t) and replaces the dummy variable t by
(-t) ten one obtains

aq (-t dg (-t - T

- Mo = 1282 [R(p(-t), al-t); -t), a(~t) |

[q’f<-t>, B (pT(~t), q (=t); -t)] ,

The introduction of the new variables gives

dq, (%)
[ B0, (8), 0,005 ), a(-0)] = -t —tml .

The corresponding equation for pt(t) is obtained in the same way. EA superscript
"tr" on an operator ©( & , 10 ) means the order of the operators ¢ and 1 are
to be inverted, but that these operators are not transposed; i.e., e(g, n)T =

dtr(gT, nT)]° These equations show that if
tr —_
B (-p, @, =t) = H(p, g, t)

then the transformed operators Pt(t) and qt(t) will satisfy the original
equations of motioﬁ. [It'might be remarked that for the Hermitian operators
p and q the transpose and complex conjugate operators are identical so that
one could have used complex conjugation instead of transposition in this case:]
(2) The operation of transposing an operator is somewhat subtle. To
examine the properties of this operation, we follow Wigner who introduces the

(antilinear) operator ¥ which is required to satisfy the relations
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(alw) = Calb)
Kiala>+ﬁ'b§ =a*]Ka>+a*\Kb>

K = 1.
The complex conjugate of an operator A, is defined as Ak = KA K. One will
observe that

(A 13)k = AR F
and

(ka|A®] Kby = (Ka|Kka[b) = (a |a o> .
The transpose of an operator is defined as the complex conjugate of the adjoint: -

P 3 *
AT - A"F - kAT K

¥*
[An equivalent form is AT (Ak) f’] We see that

(a B)T

[a B)*Jk - 3 Ak - AT

{ka|AT Kb ) = <a]A,*] b *> = <Aa.{b>* = (v |a]e)
These two properties of the transposed operator are those given in Eq. (10.2) and

(10.3) of the text. One additional property we state as Lemma I:

Ir {c [A]c>= <Kc|B!Kc> for all c, then

{a|Aalb) = (kb[B|Ka)
for all a and b. The proof is obtained by considering for a fixed a and b
all ¢ of the form ’ c> -a | a.> + B | b>° This lemms allows one to deduce
from the form of é. transformation of expectation values the form of the corresponding

transformation on matrix eiements.
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In order to calculate expectation values in a new or transformed system
it is necessary to know not only the new opé;ators but also the new state vectors.
The transformation of the operators given above must be coupled with the trans=-
formation of the state vectors to their complex conjugates. Thus if a certain

measurement on the original system gives an expectation value of

()Y = <a| op(t), o(t) |a),
then the expectation value of this measurement on the transformed system is given

by

]

Cote) Y = (xa |elp(t), () |Kxa) .

One readily verifies that

Cat) ) = o=t}

and

{p(t) ) -p-1) )

in accordance with the classical equations.

It should be noticed that the operator K is not uniquely defined by
Wigner's three conditions. A particular operator, K, will be selected if, in
addition to Wigner's conditions, we require for all of the vectors |1 > of
some complete orthogonal set the relationship ] Ki > = | y>, The operator K
is then defined by

(i]ke) = (Ki|Ka) = <i|a>* .
k

In this "real" representation the matrices representing A, A, and AT satisfy

the simple relationships:

(i) &%) s
1] a%] )

<1|A]3>*,
(5 lals) .
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The definition vg = va used in the text can be understood as an equation in

this'real representation:

i\a) = (a Vi) .
Notice that an equation of this form cannot be valid in all representations;
e.g., consider | ity = el 1> -

(3) The case of quantum field theory may be treated in a mamner similar to
that of the Pirst quantized case. Suppose (¥(x), #(x) ...) are a set of fields
that satisfy the commutation relations and the equations of motion. We wish to
determine a "new" set of fields (wﬁ(x), ¢N(x), ...) that represent the CPT-inverse
physical situation and then inquire about the conditions under which the new
physical situation can actually exist in nature (i.e., whether 1t also satisfies

the equations of motion). According to the physical meaning of the operations

C, P, and T expectation values in the original and CPT inverse systems must be

related by
() = -<ay = fag, ()
'
<Pu> = <Pu> = Sdoo <T°u(x)>
<Juvy - '<ﬂw& = Sd%)<%mdﬂ)
vhere Q, Pu, and Ju>) are the total charge, momentum, and angular momentum
of the system. These relations must be satisfied also locally, where one is to

compare contributions at x with those at (=x). These more restrictive

requirements are
=) ) = =)
<TU-\)(X) >' = <TP~V(-X)>

(M0 (x) Y= sy
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[It is to be stressed that no change of coordinate system is contemplated here,
although the same results could be obtained using this device. We are comparing
two different physical situationsi] The conditions on the local densities

(i.e., Ju(x), Tuﬂ(x), etc.) are of form
(8x) > = (- (el-x)>

where n 1s the number of tensor indices on the operator ®. In order that the
CPT inverse physics at x be related to the original physics at (-x), the

(wN(x), ¢N(x), .+.) must be functions of (¥(-x), #(-x), ...). A linear relation-
ship between them will not be satisfactory, since, for one thing, the commutator
equations of motion can never be satisfied. [We will require at least for some
possible systems (e.g. free particles) that the CPT inverse fields will satisfy

the equations of motion.] As in the first guantized case the satisfactory

transformation involves the transpose:

1]

W(x) = 17 ¥(-x) T(x) = 1 V(x) 7

g(x) = (-0)% g7(x)

where @ is a boson field of rank n (n tensor indices).
In addition to this transformation on the operators, it is necessary to
transform the state vectors. In particular if an expectation value in the original

system is

<9(x)> = <a- ’ ¢ (¥(x), #(x), ...; %) ’ a> s

then in the transformed system it will be given by
(olx) ) = (xa | 8ly(x) gy(x), s x) [Ka) :

1
In the calculation of <.6Kx) > , the complex conjugation can be removed from the
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state vectors by using the relation <K a l A \ K b> = <b \AT ' a>

then one obtains

(Hx) D'

(o | Fla(x), By, -5 x) | 2D

(a| (1 g Wx), (<17 B(-x), wouj ) | 2D
(o | (0 (x), 8'(x), o5 %) | 2>

= (a |6 (W), p(x), -..5 %) | &)

"

t 1
where ¥ (x) 1is the new field as defined by Pauli, and ¢ (¥(x), #(x), ...; x)
is the operator computed using Pauli's prescription as given in the text.

In order to verify that the transformation we have given will actually

generate the CPT inversion it is sufficient:to show that

¢ (-x) = (-1)® ox) ,

for all tensor operators constructed from the field operators, their derivatives,
and the vectors xu. To‘see this notice that for each tensor index attached to a
boson field operator there is ome (-1), by our definition. Also, for each
derivative of a field operator and for each vector xu there is a minus sign

associated with the change (x) - (=x). For fermions, we have

() 0¥ () = T 1y ¢ ¥(x)

= =(-1)" ¥(x) & ¥(x)

where m 1is the rank of the tensor ©, If the Lagrangian (and therefore all the

operators derived from it) is antisymmetrized with respect to all fermion fields

and symmetrized with respect to boson fields then the required transposition of
e

/“/ the order of all the operatdrs will introduce the necessary minus sign for each

palr of fermion fields and the réqpired transformation properties are indeed
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obtained. A detailed demonstration is given by Pauli in the Bohr anniversary volume
We may now turn to the question of whether the equations of motion are

satisfied for the new fields WN(X). Thus we ask whether the equation

L2, (0, (), oee ), 2(uy(x), Bl | = - isi—u £(uy(x), i (x))
(Eq. A)
is satisfied. If in this equation we replace the dummy variables x by (=-x)

and transpose, we obtain

[2,70h(=x), By(m), woes (), Huglo), Al = 1 éix; £y (-x), Fy(=x)

which may be written

[2, 7w (=0, 8'(-0), 005 (), v/, 8= i g o (), 9 (0)

where g(¥(x), #(x)) = ftr(i Ts W(x), (-1)° #(x)). Comparing this equation
to the known equation of motion for functions of ¥(x) and @(x), we see that

Eq. (A) is satisfied if
R, (W), B(x), ooy (2)) = B (¥(x), B(x), -oe5 %)

If Pu is obtained from a prope;ly symmetrized Lorentz invariant Lagrangian,
then ' this equation is always true as a consequence of the relationship
6 (x) = (<) ef(x) |

applied to the stress-energy temsor Tui{x)°

The CPT transformation is peculiar in that the 1aﬁ of transformation with
regard to each)tensor index is the same, independently of the particular type of
quantity involved. It is for this reason that the Lorentz invariance alone (see
below) will guarantee the invariance under CPT, Under parity (P) and time reversed

(TC) the possibility of having pseudoscalars, etc., destroys this connection, while
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charge conjugation alone (C) is not correlated to the tensor indices but to specific
operators. Consequently for P, C and T separately the requirement that the new
fields satisfy the original equations places additicnal restrictions on the Lagrangian.

Besides the assumption of proper Lorentz inveriance [land a tacit
assumption regarding the local nature of the fields and the Lagrangian ] the fact
that the lagrangian, and consequently all operators, is symmetrized with respect to
boson fields and antisymmetrized with respect to fermion-fields has been used in
the above de;relopmento Since for commuting (anticommuting) fields the anti-
symmetrized (symmetrized) forms would reduce to c-numbers and hence constitute a
removeable normalization constant in the Lagrangian, the normal connection between
spin and statistics is implicit in the symmetrization rule. Hence the usual
connection was, in effect, assumed in the comstruction of our CPT transformaticn.

Conversely, if we are to represent the CPT-transformation in the way that
we bave, then we must require the usual connection between spin and statistics.
This is Schwinger's deduction of that connection. This proof involves showing,
independently of the connection between spin and statistics, that the CPT
transformation cen only be represented in & way equivalent to the one that was
used here and bence that no CPT transformation could have been found if the
lagrangien had been symmetrized differently.

(%) It might be useful to point out that since the new fields and the old fields

obey the same canonical commuteation relations (i.e., on a space=-like surface),

they may be related by a unitary transformation:

g™t ¥(x) R

¥y (x)

]

#y(x) R gx) R .

If R is independent of the space-like surface then the commutator equations

of motion are invariant. In terms of R the transformed expectation value is
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(=) Y = (Ke | oulx), gy(x) Ka)
= (Ka | eolr™ yxr, B (xR) [Ka )
= {(RKa [ oy(x) #(x)) [ RKa )

= <F” ‘ 9" a“>
In this form the transformation to the new physical situation is represented by a
change in the state vectors alone. Pauli's transformation changes only the operators
If one wishes the transformation to change only the fundamental dynamical variables
(i.e., p and q) but to maintain the functional form of the derived observables
and also the commutation relations, then both operators and state vectors must be
changed.
(5) It may be of interest to sketch briefly the connection of the trans=
formations given above to the corresponding transformations in the Schrodinger
representation. In that case, the state vectors are changed and the operators are
left unaltered. In particular if
() ) = CUD) | & | ¥

then we may represent the expectation value in the transformed system by
CODERIRCES CONKARBREO)

where U 1is a time independent unitary transformation. If we write §(t) = S(t)ﬁH

and define S"(t) = U K 8(-t) K U™, then

CODS

(") UKy |o | 8"() UK ¥ )
- <U K §; | 8"(t) & 5"(¢) | UK i&H>
= <UK1H]6"H(1;)|UK‘[:H>

= (K | VT o) U] Ky )

- (% | (o™t ¢.(+) U)F | % > -
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If S"(t) 1is equal to S(t), which is the condition here that the physics is
"
invariant under the transformation, then & H(t) is the same as the usual Heisenberg

operator O:I(t) , and U 'is the-same as the R defined in the preceding section.

Canonical commutation relations for a scalar field (t = t'):

These relations do not exhibit Ierentz invariance. For a complex scalar

field, @(x):

1 l'%a ’ ﬂ(;')J = 1 [%%, 525*(53')] = Const. x 5(5)(3?- x')

where

8(3 )(?) is a three dimensional & function.

On strong reflections:

g(x) = #(-x) , g (x) = B (-x) -

Again we must teke account of the inversion in the commitator to find

1
+*

i[TMtx , B(x') i[gl(x')) 'a_%*g)] = 1 @g(=x'), "'ag_;x

Const. x 6(3)(?' -% .

Thus, for scalar fields we have the same invariance in the commutator under CPT

as for spinor fields.

FOOTNOTES
1 pault prefers the treatment of Schwinger: Phys. Rev. 82, 91k (1951),
especlally p. 925, f£f.). Here the concept of the transposed operator appears.
The concept of the conjugate complex does not so directly appear.
2 _c! ] = -1 i ~ =
¥ (x) = TV (x) = W T T W(ex)
ia i -l =
= e ¥(ex) = %y 07 W(ex)
5 5
. ic -1 i 1 o~
.o C = = C
Ts Ts
plo B =i ~ _ eoioz ~ =i
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LECTURE ON "CONTINUOUS GROUPS AND REFLECTIONS
IN QUANTUM MECHANICS®™ BY W. PAULI

Notes by R. J. Riddell, dJr.
Radiaticn Laboratory
University of California
Berkeley, California
LECTURE 11
We will now generalize our results concerning the vacuum expectation values
of field operators from free particles to interacting ones. The only assumption
that will be made is that the vacuum is the state of lowest energy. We will follow
the development of H. Lehman (Nuovo cimento ll, 342 (1954) ).
[?auli regrets that spinor fields are jignored in later papers of this group. He
feels that one should not make a set of assumptions or axioms if they are "empty";
i.e., they cannot describe our physical world. Physically, a system involving only
scalar fields is not acceptable.
We will begin with a scalar field, but will then pass to spinor fields. No

explicit assumption about the interacting fields will be made, aside from assuming

that the theory is invariant under the Lorentz translation group:

and

%M(x)gooqutx(x)yaoo
are assumed to transform according to a representation of the Lorentz group.

The equations of motion for a scalar field gives

o . _oAlx)
R e
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[%u 5 P;] 2 0,

If we consider the eigenfunctions of B“ g

thengl
<of A{x) I If) = <o [ 400)] ?) elko® |

Thus we are explicitly using the concept of an energy-momentum four vector. In this
formalism, however, it is not correct to express them in terms of the fields.
The eigenvalue problem, whose solution would allow such an expression; is very
important but it has not been fully treated as yet.

For simplicity, we will assume that the eigenvalues are real, although more

generally we might have complex eigenvalues. We assume:
k)0, and Az - k°k>0

(that is, ko> 0 4is all coordinate frames).

[For the general, non-real eigenvalues, we might write

k gm&,’ where “Z*[iw = =1, and Re {m)?(ﬂ

Now we consider the expectation value in the vacuum of the product of two

fieldss?

<o | atx) B(x“)lo> - % olke (x - x') <0]A(o)| k)  x|B@f0) .
M

(k> 0)
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Thus we have a function of the positive class, [%his can be generalized to a
finite number of complex masses, with their complex conjugates as weli] We assume
that this expectation value is invariant with respect to the continuous Lorentz
group, so that the function satisfies our previous requirements about functions of

a pesitive class. We now define a mass spectrums:

Prit) 2 = 2 Solaol i daolo)
(2m)7 (K, 3dk,)

where the summation (or integration) is to be carried out over the 4-dimensional

region in k of volume dAkQ centered on ku . The sum must only depend on A , s a

result of its Lorentz invariance.,

Thus:

<A(x)B(x“)>c = (21)3 fdék/oAB (A) eik°(x - x') = Fyp (x = x7).
Ui

ors oo

Fpp (S) sfiA+(§;)\),DAB (A) ah =F,5 (),
[#]
and the theorem of Wightman holds.
We have an important reality condition:3

¥

N

S5 W) = P (A)

[}f the metric is not poéitive definite; B¥, A* are the adjoint operators to B;Eg
Thus we see that the expectation value of a self-adjoint operator is real.

If we choose B = A%*3

&
fDAA* = /{AA*
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so /?AA* is real., If the metric is also positive definite, /OAA* is also 3 O,

since then:
(o] sk ){xlas(@)]o = | (o[t K)[2 » 0.

In the indefinite metric, these results will only be true for states of positive

ngrmg4
We define a real field to be one which is identical to its adjoint ("self-

adjoint.")

Now we return to the CPT theorem:
(1) Since F is of positive class, if F = O for space-like points, it will be

zZero everywhere.

(2) For any invariant function of a single 4=vector and a space=like argument:
F(§) = F(=%) (£:%) > 0,

The latter statement is easily proven by choosing a Lorentz frame in which t = O,
— -
Then it is always possible to rotate coordinates so that T - g o The theorem

also holds for two vectors, but not for three., It will not be true for time-like

arguments.

We will now prove the equivalence of the CPT inversion and microcausality.
(A more general discussion is given by R. Jost, Helv. Phys. Acta 30, 409 (1957) ).

In the present case, the CPT theorem givess:

<A(x)B(x") >,0 <B“(x“)A“(x)> °

<B(u-x“)A(=-x)>> = Fg, (&)

11

il

]

(A6BGx) ) =Ty (5),
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The last line only follows if the CPT theorem holds.> Note that the arguments, % ,

are the same for the two functions, since
(=x') = (=x) 2 x = x' &

The CPT equality is not an identity even if B = A¥; but only if B = A, EJe cannot
use /OAA* = IOA* y o even though both are reag

We can show the equivalence of the CPT relation, which is:
Fpp (8) = Fy, ()
to a relation for the commutator,

Microcausalitys

A system will satisfy a microcausality condition if's
E&(x)s B(xt)] = o0 for (£:°8) > 0,

We will actually only need the much weaker assumption that

<E(x)9 B(qu)Z =0 (E'8§)>0

Nowzs

Fro (%) - Fo, (-%)

{ me)g B(va) )

0 for (£°8)>0 ).

—~~
[

However, Fg, (%) = FBA (-Z) on this space-like region, so if

G, (8) =F,; (%) = F, (%),

then G, is a function of positive class, zero on a space-like surface, and hence

is zero everywhere. Thus, for all ®
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Fyp (3) =2 Fy () .
Thus microcausality is equivalent to the CPT theorem,
FOOTNOTES
1 We can integrate the equations of motion to obtain
A{x +a) = o—iaF  aA(x) o1aP .
from which the result follows immediately, since , O;} 0, if O;> is

the vacuum.
2 If the metric is not positive definite, Z ,k > < k} will not in general represent
k
the unit operator, even if k is a complete, orthogonal set of eigenvectors, since

they would not be normalized to + 1. In general, the unit operator would be

il Sy
I+ should be pointed out that "expectation value" as used in the text only has
the conventional meaning if the metric is positive definite. Otherwise, the
matrix element <ol 6’\o> must be divided by the norm of the state <olo>

3 Since<o[A*(o)|k> = <k|A(o)|o> *

4 In the more general case, we have:

<OlA(O)|k>< k|a*(0)]0) = ‘@‘A(o)|k>’ 2 \Q(k)o

5 As we have seen in the long note, lecture 10, the CPT inversion may be either
jdentified with the operators exclusively, as is done by Pauli; or partly with
the operators and partly with the state vectors, as was done in the note. The

latter has the advantage that operator functions of the field operators need not

be changed in the inversion, It would also be possible to change only the state
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FOOTNOTES
5 (Cont.)

vectors. Then we would have:
! '
at O NC ANPICRICON R A

However, if we assume that the vacuum is unique, the CPT inversion can at most

—~—

lead to a trivial phase change from the original vacuum, ifo o Thus:

{atx) B(x“)>; = {at) B Y,
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LECTURE ON "CONTINUOUS GROUPS AND. REFLECTIONS
IN QUANTUM MECHANICS®™ BY W, PAULI
Notes by R. J. Riddell, Jr.
Radiation Laboratory
University of California
Berkeley, California
Spring 1958
LECTURE 12
Remark on the stronger physical requirement of microcausality:
The statement
[Kx), B(x1)] =0 (5-%) >0

can be formulated in terms of the vacuum expectation values; ors

(0, B AGm)eeBlxt1)ane D = 0,

(Wightman)

We now generalize the previous discussiocn to the case of a single spinor

field (which anticommutes.) [gér several fields, one can always find by suitable

transformations that they can be made to anticommute, See the paper of Lﬁderég

We will not assume C or P invariance, but cnly the continuous Lorentz

transformations and the assumption of the vacuum as the lowest state. Then
we can build up quantities like

(kek)s  (kow), (kek)¥gs (kub’)rsg
Then we find:l

PRIIPRd b L e

\
) I I,
+1¥; (U"k)/OL’J-f + ib’ O-WK

fd%?
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where
‘f':‘{’*b’A o

From this follows thats

0 © ®)
R
v Gl [+ e f/”” (»1 ax,

() °2 ()

qu (®) ' Tyy (XU

and we have functions of the positive class as before., The () superscript means

that either I or II may be inserted throughout the equation. Thus:

= 1
RECIIPY @ 2 RGO +16k ©

D II . II
+ ‘(S(K "SE) F‘PV (8) + 1%, G (E)l o
Jf

There is a reality condition on these quantities, since:

<Vp (' )y (x) >o* = <l"q (X)?p*(X") >o

Then we find?

*() QO *() ()
(i? = Lyd o Tvg = 9G¥

We must again obtain an equivalence between CPT and microcausality. We set
¥ g = Ly eI o I (L
<Yp (x*) 't (x) >o (¥ Bg) Fyy | %) + 1eGy, (=%)

+ 7 (5. 2) FEL (-8) + 1y G, (%)
5 2" tY¥ 5 o
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Rt ) D, ={- (£5%) Fgy (9 +10gy (9

R 11 II
~w, (53 B (9) +an ol o;)} :
4

BUNCIES SV ﬁf{( (N
¥
=f§ (o, + 18) (53 a)

0
Ty N

Y e, oY, (n=al)

We cannot get any connection between the F's without a further assumption (either

CPT or microcausality).

< {Yc((x)g?ﬁ(x“)} %ao ir (5:¥) >0,

We assume:

Thens>
) @) o=r), @
ir (8:¥) >0,
G% (8) = c) (-3) = ol)y, (3)
Thus:
rd (@) =5 @
G% (8 = 6) @

everywhere,
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The CPT relation is:

Frer b Y =& 0 Fy ) D) = Gl Dy

This gives the same relation as does microcausalityo4

This is all that can be obtained, since we don't assume any specific in-

variance., If one assumes P invariance, for example, the II parts vanish.

Now, if we consider the vacuum expectation value of two 9D“s9 the Lorentz

invariance leads to the forms?

CRe H ) 3 = { {_(wr%%-) FL(2) +1:Gyy (3)

. iI ~1
+ a’5kzra-%) FLL(E) + 1% GW(E)} c }

where

c'l;-:c-?;s, v, =0t , o= 1,

CY, 5

M

If we change the order of the operators:
= 2 I o I
““<Y(9 (xg)\ro( (x) >O = [{(K','gg‘) F**« ("'E) +1 G*,*("'g)
=35 (¥ =2) FIL (-9 + 1¥, G (-i)} c-l} )
1
since C, 0659 CK5§@ are antisymmetric, and Cou , C‘{i@ ,Z;i} are symmetric
matrices ( and from this, c-l, 350"1, 3%@; Cc-1 are antisymmetric and ?§LC-1 5

f% ,f%} c-1 are symmetric).

If we now apply microcausality:

<@§x)9*,3 (x“)} >o =0 for (5-%)>0
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and CFPFT gives:6

p (x')y (x ;>“ = ¢y (X! (x? :> = << x? x _:> o
%(NU)M@&H%()O ASENCOPA
In each case, we find an identity with the exception of F%%,, which must vanish,

Thus, only

IT
FWY =0,

to satisfy either condition.

iIf we consider states of only positive norm, we find other relations. To
get such relations, we must have ¢ * rather than ;‘, so that if we multiply by

KL and take the trace, we find:

-

(=1) 7Ir (b’»k)b’4 =k >0

so that’

I o,
Pyv’

FOOTNOTES

1 The most general relation would be:
Mg _7’_‘@ | Y0 x> x I‘Fﬂ(o) lo = % (7 do g £, )

where A is summed over the 16 independent 4 x 4 matrices. Now, the Lorentz

invariance gives relations like:

M (5 o, = 48 (R,
and since this term must transform as part of a four-vector
£, (k) = kF (k)

where Fi(kx) = F'(A), The other terms are obtained similarly, except that
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FOOTNOTES
1 (Cont.)
L

¥ “ Juj is antisymmetric and no antisymmetric tensor can be formed

from kAHSo
4

The k/q‘_“s give the most genmeral form, since the Lorentz invariance

requires that:

1§Mf(?\) = éj— g(A),

L

[f(h) = g“(aﬂ and the ai— gives no more generality.

2 . . . . 2 %
Using the adjoint relation and k* = k; k4 2 - k4 0

3 We use the same arguments as in the scalar case. For the F's, we obtain

J I ‘ -
(r 2) [ -9-m} (9] =0
but this is equivalent to the 4 equations
u:%g [F\,,%, (-3) - RE (5)] =0,

Thus, the F's can only differ by a constant, which is of no significance

in the commutation relation. A similar result holds for Fno

4 -
<V°“( (x) W‘} (xu)>o = _(K5Zxo<“@aq (’x)\‘jﬁ ﬂ(~Xﬂ),>o (6’5)16'/5

= (% [(6-@-(:% Fq,%[; (-%) + 1°GWI1P (-8)
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FOOTNOTES

4 (Cont ° )

+ 7)’5 (D/ (29 ) Fyv ( 3) + iD’5 G‘V? (“"g?] UE

~p

= {(a’ ) Fﬁ (=8) + 1°G,,Iq: (-3) + 8’5 (b’;’%) Fﬂp (-3

+ 13’ it W (= ?i}
¢

:<ﬂ7ﬁ (xa)y«(x)>oo

5 The C enters to give the proper transformation properties. Since
@C = "’YC,
then
transforms as does (}JQL};Q - The C is removed by multiplication by C‘l, to get

the stated relation,

sty ) ) m =00) o (g Y D, ()

= = (85 )eus

{{ (275’%) F@ (=3) + 1:GLy (-F) -% (b’—ﬁ-) W(:g)

-+ i7r5 G‘Y‘I’(E)} c—:l 1 41 5/3%

= { ) [ (5% By (-9) + LGy (D) - 1] ?J

=<4
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FOOTNOTES
6 (Cont,)
= "[ XS é’x‘%‘%) F‘f‘\y (=€) + 1o G (_,‘5“) - 3’ (b’ ) wa (-3)
+ 1 6L (gg)x X c*l]
=f
_,[ {(a’ =%) Pyl (-3) + 1. GW(;g)-;-b' ¥ =% 2 =) Fop (=%)
+ ir GI\‘J ( S)j :|
7 We haves

ax
ak%kp@m ©] © (el L0 ] SACHI P C(zrk)/ow

+o}

Thus if we multiply by (Kl)ﬁ°< and sum on o also, to get the trace, we find

,__I@ (o)}>

K 3k (211)3

a%

(2m)3

Tr i(b/ k) Y ﬂ}’¢+°°°

= = /Dw °
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LECTURE ON "CONTINUQUS GROUPS AND REFLECTIONS
IN QUANTUM MECHANICS™ BY W. PAULI

Notes by R. J. Riddell, Jr,
Radiation Laboratory
University of California
Berkeley, California
Spring 1958
LECTURE 13
Generalization to more fields:
If we have several spinor fields which anticommute (as can always

be accomplished), we obtain very similar conditions to the single=-field

case:

Oy oo O ~ 0 o) =0 O

0 () () @)
= (4 = - o
Fwa‘ (g) Fﬁ‘q) (.a)9 G‘I’% (g) Gﬁ‘P (E)
These are the conditions both for weak microcausality and for CPT. The

reality condition relates different quantities:

/&g(p:/gﬁ

In the paper of Jost, one finds the generalization to more than two
factors in the expectation value, In such cases; the CPT and microcausality

always connect factors likes
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( (1)
PP D = GV g )y

We will probably come back to this in a different connection. To develop
the theory would require the theory of analytic functions of several complex
variables., We may give an explicit proof for some interaction hamiltonians

later, Jost does not use the positive definite metric.

Inequalities:
I
The various quantities/O 9000 Satisfy certain inequalities. First we
let g=Ys

Then, -
I I II II

- a -
/Oq) 2 WLPD/OLPEP pﬂ'qu

are all real, In addition, if the metric is positive definite, we have seen

that:
/OAA* >0 (scalars) i
. :
f9 - 0 (spinors) .
Yy

In addition, there are other relations. Consider:

(2m?

'1‘2’_ I%Z;dk/‘<k IW; (0) ] O> M«fg‘@ Iq; (0) l k> =1 de"koZM , i

I
which defines ZE_ o We see that‘zi = /9 —~ o (see note No., 7, Lecture 12)
M 1 vy

Now, if M? = 1, the eigenvalues of M are ¥ 1, sos

I I
£ e 2P
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Also:

Since:

M=

V__;
Nows <M, (0) |> < |¢' (o)| > i(Yok)/O
/’*

(Yok) 3 M2==T(kk)=l- .

(Yokx) o - i 1
+iv (YKo _ +iv o =\ &
5 Yy 5 WV

If we now multiply this equation by [af (r M) °J , We find®

L

st_l__ko'-Ig

oM Ty o WY
sos

I I

c Evyf .

This relation was derived by Lehmamn,

Now we may generalize:
M= AY + B (Yok) + C -2 (Yek) Y
5 VX 2} 5

Mo a2+ BPrciel,

If we proceed as above, we get:2

1Ty ¢
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II

— 11 I I
o<y =P +B L0 1o Lo 4P
A< TP T

for all A, B, C.

We will get the best result if we maximize the bracket33

11 1 1 I
A 204/0 9 B :“v_—fo. 5 C =°<v-_'-f(}

where
o< =

\[f}l)% oh2+ o2
A

Thus we find that

II\2 1T 2
°@<(Zm)mx \[ )4—(0-)3( </o

[le 23

I2 1.2
(ah% 2 5‘0) < (3R

This result was not obtained by Lehmenn since he assumed reflection invariance.

The spinor equations of Gurseys

We now begin a new discussion, in which we will write the spinor equations
in a form which plays a role in the theory of the neutrino. We will consider,
however, the proton-neutron system in the non-electric approximation. We assume

m = M =M o
P N

Then:

NS
<
D
=

=
of
i
g
>
D)
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We now introduce two new fields, which satisfys

¥ 2.5 :mYX

M ox

Z

Y.a;_”L,:“mY,_‘g

/“"ax 2
/l.

The system of %E} has & certain group associated with its%

X % 1\ °
3 - 3 +b§ T

where:
P|2+Ibl2=L
5

A second group is:

2 o 1% X

= + .
g - mi<><\’5 _g ;,-:ceoscx,g nisin°<x5 3
e

This is equivalent to the transformation in q)P,, LPN on‘.‘s6

P - ¢ 1 Y .,  (Baryon conservation)

The former group is the isospin group.

The connection between () 's and X 3 1557
Tarary)y + 2 arvyp ’
5 P 2 5 N

]

S=3(1- -ila-
Ba-v)Y 2[(1 Ys)tpn]
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If we choose the representation for 'x; as
0 -1
1 0 1
Y = E = 1
5 0 =1 -1 0
Thens Po\° 0
c 1
[Jg (1+Y5)$U] =¥, | =0
*
0 Y,
3*
0 \Pl
c »
0 _lPA*
c 0 !
[}i’(lﬁr)q} = - 3
5 Y 0
3
Y, 0
Thus we find: |
P P *N *N
/{ :(P X e—.q) X =i(p X =.=.iq)
1 1 2 2 3 2 4 1
®N *N P P
T =+il € = -1 s =9 £ =y
1 4 2 3 3 3 4 4

It is of interest to write down the vacuum expectation values.

@(h)?ﬁ (x“)>o =<§} <x>’§o<(xa)>o =
- (x(x)i/g (') =<'5('/ @Y )
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+<§°<(")7(/"“')>0 = - %}"‘“)}, - J0ae) ).

The group is isomorphic to the spinor group of three dimensional rotations.

FOOTNOTES
1
3* i _
*kzdk/2.<wx(°) |k> Q:\ by (0) |c> ot mk/)m =
a%x o I I o II
o3 Ir {:[i (¥ek) /Oq)q,) 10,5 +iY5(Yk)/oqj_q_).
it i (v
cane, ] (415 o)
;.—dik— —-k—OO‘ _I.
@m? VA Y
2

The new terms lead to

I - II
{i‘( (Yk)/o (-'f‘(‘( } —ko/oq)q?

II

.-II o.—l.— o =...1f.9 o~ -
T’{”s"w G*‘Zﬁm‘”s)} =y

and the other traces all vanish,
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FOOTNOTES
2 H2 2 _ .
We must require A+ 4+ C" =1, otthen enters as a Lagrange multiplier.

We must show that the equations remain invariant with regard to this group.

First, we develop the equation for ‘5’ Cs

Here, we have used the facts that C’l, YSC"l are antisymmetric, *o;‘c’l

is symmetric, x = real, X, = pure imaginary, plus the equation for g .

We note that the equations are not C invariant,

(o] [+

g =af+byd A = ay +oYX
so that: c
2% _ S _pry 2%
);“ 9x/“ = a}" gx/,_ b 5Yf*gx/,

:am*r5’/t-rbm;{c

i
= mYs'x

9
A similar development holds for X °
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FOOTNOTES
-3
‘;u g%/: = = COSB 0<omY5 ¥ + i sincee a;°m‘o; 13
'
= "m3/5 E ]
(!
and similarly for T .
See below, for the representation ?;- = (1 0) o
0 -1
We have
R c
v, 4% . 1+v)¥E L iy [1 + Y
=y =y, $1+ ) 7% 2 PIE @+74]
Nowz:
LPC = G'lll—i= "wc-l = “P*YAC-l = "2' ¢l LP*
so:
t Yol gtyhy*
[(1 xb.)lPl\i‘ - SRR
But:
~ /——/
cly” «-T1l¥ = -)'50-1 - ysc‘l

s0:

-1y * * o=l
AL e == Q) (B0

- (l:,-_ YS)@NG-I = (1 - 7’5)(|)Nc .

Thus:
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FOOTNOTES

7 (Cont o )

X i oy 2 y°
Y, %{; =30 -v,) nf+35 % @ Y5)3x/.( .

=t (-Y) m(PP+=i-‘ ¢! +x5) m%"

=m {:g(l - YS)WP+% [(1 - 3’5)4/1& } .

But:
= - -1 ¢
)’5’5 = - (1 YS)WP z (1+b;_)8"N

803
Y .Lx - = My
Z = 5 -
93‘/4 5
A similar development holds for the § equation.

We need:

s c
T2t @-vb -3 [@-vh)
i c
=3 Q-0 -1 arY Y

* »*
=% 1-Y ) + 39w a+ry)y
5=t 5)4 2%y ( 54

- — —c
T=1Y, (1 +Y5)+-;-WN (1 “"Y5)o

Thus, for example:
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FOOTNOTES
8 (Cont.)
Ews, ) =ta-n) & Wh D ), ,

N ¢ N c
stary) (U @ b, ) > a "y

21 - [ w—2-~)A()] (1- )
I A P

+4+ 1+ Ys)o(«v [ - (‘;* 5%, ~ m)i A*’(S)J 04'/“(1 - Y5)ﬁ“,€

= {%(X/AQ—% -miA(s) =4 (‘%ﬁ;*— m)i A (s

o+

o

2 N =yl
S A A ALID

We also find:
— e i (]
7 =40,a -7 §U5N @+

Alsos
- <‘§o<<X>7(/,<x“>o = {m r,) (x/ﬁa; -w) Q-7

-1 a+n) Ookom arv)y 14,00

5 14,(s).

- - m‘(aﬁ



UCRL-8213
Iecture 14
IECTURE ON "CONTINUOUS GROUPS AND REFLECTIONS
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Notes by R. J. Riddell, Jr.
Radiation Laboratory
University of California
Berkeley, California

Spring 1958

LECTURE 14

Another possibility for introducing new fields is to set
T, 5;; vV = mg

3
Yh 3;; g = mv¥ .

These show an invariance under the group of transformations:

¥' = aV¥ + b Y5 ot ¥
g =a¢=-b‘r50“15
ior -ioy
Vo= e 2y o= ¢
_ _ oy iar
Vo= Fe ° 7= Fe 2
The connection with WP’ wN is now:l
g = 2(er) N FCRME P
= 31+ -5 [ *Ys‘kN]
1 1 ¢
AR S R R

Here, the vacuum expectation values satisfy:

<YLx) By(x') >0 = < Hulx) ¥y (x1) > = < g (x) Bo(x') >, =

- <Py ) > = -l (14, ()

and
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<) Ty(x) > = <) Blw) >y = - < Tl g(x) > -

= -<56(x) \ya(x')>o = 604[3 [i A+(s)] .

Remark: There is an interesting problem here. One might ask for the most
general expressions for the vacuum expectation values, with the Lorentz and
isospin groups present. First, one can replace one A# by F and the second

by G (the free particle Dirac equation would comnect them). This thecry is

gauge invariant since < V¥ ¥ >o 0. This would not be the most general
possibility. Pauli does not know the most general result compatible with the
group. A particular case is that in which there is only ome spinor, V. (g = 0)

Derivatives can also appear, though they will be restricted.

The system of Glirsey is slightly different to that just given. The
relation is
= X =
g \4 r5¢
where the sign of X related to @ 1is just a convention. The 75 is the
essential difference.

There is a little more symmetry in the Glrsey choice, since

X / X X
= a + by ¢t
P -
3 4 €
iar, =icy
g' = e 5§ » X' = e 5X °

However,
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{:The signs of the two equations must be different, to keep the second order
equation correctoj

Also:

d c c ) c c
Tu »x £ = -m T5 X", L~ X" = m Ts £ .
M M
Gursey has a particular way of writing these equations that is not
fundamental, but is instructive. He introduces matrices for V¥ , and chooses

75 diagonal:

*

e
I
(¢}
it
*

A oo

The Dirac equation is obtained, using

D = o Eﬁ.éa
ot %
and
o o~ - 1
F=o0%o s

where, for ordinary 2 x 2 matrices (not g-numbers),

¥ = Det. {¥] x vl
Also:
* *
v = + .
“‘ye ¥y

With resﬁect to the groups:
- yu
where U 1is the most general unitary transformation of two variables.2 For

the first transformation

Det U = 1,
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while for the second

Uu = eﬁa 0
Replacing
X e X
= e ¢
by going from column vector te matrix, we find:3
DE = imX
DX’ = -im3=
wd = » ZU = ZRe®
X - X0 = xRe @

where R 1is the rotation group (Det = 1;.
[ Pauli doesa't like this too wello]
The existence of the group, isomerphic to baryon comservation and
isospin conservation, is the important thing.

' ia . r i
o= dpe g o= ¥y e (baryon conservation)

The transformation R does not commute with C or P, but it does with CP.
In the case of weak interactions we can write it in such a way that only one
field (X or &) occurs. This was introduced first in the case of the free
neutrino. The equation of a four-component neutrino has the full group.
However, if it is a Majorana two=component neutrino, then only the second

group is preserved as compatible with

-y
Qar

vo- e 2

I
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FOOTNOTES
. o, ©
°g Mo i N
T, 3;; = 5{1- 75)ru 5, 5 (1 + T5)Tu 5
[¢]
= FQerdmy - 3 [(1-r5)mwN]
= my o

Similarly for the ¥ equation.

The invariance under the first group comes from the fact that the 2,

satisfy C invariant squations {(the lack of a Y5 as compared to Gursey

accounts for this), so that:

du
LIV
14

We find:

For the first

3 v Al
= 287y =— = b¥y.TY =
1 dxu 5 'u <
c 7
= m [ a g - b L o4 ] = mnfg .
* ¥*
= Sag' Ty Ty 'w&*rurh= m¥Ty, = -n¥
i i
_ <138 _ 3@ . 1 _ 7 ¢t - ¢
= Tuc 3;;}: = Kg ruC = «-m\b‘ C = m\b’ °

group ol tran

Xy

*a

sformations we have:

(1 + 7v5)

5 X

and
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2 (Cont.)
1
Xl
X'
¢ ( »
1+ 'r) (l+T) (L+7
- 5 ' 5 c
0 5 X a 5 X 4+ b 5 T5X
\. O
(1 + 1)
- 2. (ax + bX%
2
Also:
(1 +712) ' % (1 +72) « (1 +72)
—-——-5—- 'X,c = 8 _-__l Xc - b 7T _____..__5_. b4 o
2 2 5 2
Thus we have;
! ‘e o] * * c
Xl Xl a.Xl + le -b Xl+ a Xl
' te e * * c
X2 X2 axe + bX.2 ~-b X2+a X2
c *
Xl Xl a -b
o) *
X2 X2 b a
so that, since la’e + fb'z = 1, det U = 1.

For the second group,

iozr5

X' = e X °

Now
c

(x1)¢ [(cos a + i sin aor5)x ]

1l

c
cos a.X® « 1 sin G[T5 X ]

n

(cosa + 1 sina 75)Xc
iar5

c

= e X
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2 (Cont.)
Thus
c' c
1
Xl Xl ia Xl X’l
ct e
1
Xa XE X2 X2
5 ,
In this representation,
1 0 0 1 0 icrk
Te = T, = Y, =
5 0 =1 b 1 0 k ~ic 0
k
where the "elements" are 2 x 2 matrices. Thus;
3 X
L o + 14 S g = m ’
i ot k Bxk . = X
N 2
and
£ X
: 9 - 10 - 2 : = = g
13t K Exk -
£ %y
* * i
or 51 X3
19 ~ 9 - m
I® " TR * o * °
¢ 4
If we choose the usual representation, T =0, T = =C B T =0
X X ¥ N Z z

so if we multiply the equation by oy, we get:

.§* X*
}_5 + 1o 0 g t = mOGO ’
iE‘E ksi y ¥* y *
£ Xy
or * *

-8 - X

i% + 10 9 : = m *

i k - °
g * *



3 (Cont.)

Thus, since

~~
I
j -

the equations satisfy:

ML

1192
¥*
*
= imX .

The development is similar for the X equation.

UCRL-8213%
Iecture 14



UCRL~8213
Lecture 15

LECTURE ON "CONTINUOUS GROUPS AND REFLECTIONS
IN QUANTUM MECHANICS™ BY W. PAULI

Notes by R, J, Riddell, Jr.
Radiation Laboratory
University of California
Berkeley, California

Spring 1958

LECTURE 15

We now come to a discussion of the weak interactions. For these; the
symmetry is less than in the strong interactions or the electromagnetic ones.

For the weak interactions, the symmetry can be no more than CP, The symmetries

involve:
£ £ L
QU ==-Q EAE B0 0= -t
Particles —> Antiparticles t!' = t X = ;c—)
Q" = Q Q" =Q

In the P, T cases "charge" is preserved. Here "charge" means more than
electromagnetic charge;, and includes leptonic charge plus the particle—
antiparticle concept for nucleons, etc.

The experiments are not yet good enough to prove the CP invariance.
Now, there are interesting postulates which can be made about the weak
interactions, though none is yet proved, Different definitions can be made

for the leptonic charges. One particular choice is:

Qe.@;:% dv(BJP*”\PP——] ) B; gq)e])

:'£ av ([g)e* 9qj;]'+ [gif 9q€/j})

Q
lepto
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where q)P is the proton field; QJQ the electron; and 4/ » the neutrino,
e v

The leptonic charge is then:

+1 negaton neutrinos
o= %

=1 positon anti=-neutrinos
e, v
0 nucleons

If we have conservation of leptonic charge then possible reactions are

PIN+e +v (bound)
N2 P+ e-+7 (free or bound)
Alsos
P+ VS N+ e, (Cowan and Reines experiment)

N+vV—95 P+ e~
We only have strong sources for negaton decay, not positon (neutrons).,
A check on the conservation of leptonic charge would be gained from

observation of the sequence

NoP+e~+7,
and

N+V>5P+e-,
which would be forbidden if leptons are conserved, There is an experiment
by Davis; but it is not good enough in accuracy. The absence of double
beta decay is of the same charactenl We will assume the conservation of
leptons.

The thing which is definitely established is that C,P are violated,

Other processes of interest are:
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| | + 9
’Tr+—7\/u++-'l/ W+—-)%+
Tr_—)/u__‘f"lj TT_‘7/“—+_V
- o°r J+ v
M e++ Y+ }41\_4 e++ -

/A_—é e_+vV+V

We can exclude the second one (experimentally), which gives the u, the

same leptonic charge as s+°2

There are also weak processes in which v's do not play a role as wells
A — P+ -
o

N = Nem
o

0
K>3

K—=27
K—)/(:#Tri-"./

Kde+T+V

Py N+u +V Ntu, > P+

NﬁPf/-*f Ptu, — N+

It is important that non-neutrino C and P violating interactions

also occur. The neutrino ones are just a special case.

We will now consider ordinary beta decay., The interaction will be
written as:

B =) 0, @ &) (P eU) s heo,

int,

Leptonic and electromagnetic charges are conserved, The conservation laws

correspond to the invariance unders:



E .M, Charge:
o<

i
2> Ye

Leptonic charges
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N T A TR

i 5
Y, = LPee’gg %%yve‘fg q)P_, v, - (,[JN__)WN

Baryonic Charge:

iY 1Y
9 U 9 ! 9 ! — o
L!’}P_ﬁ) LlJl’e 1)Nn} q')Ne L'aJe ~ q(e PV LP"/

Pauli believes that only leptcnic charge conservation is not certain,

The baryonic charge is defined by:

N;%/&QQ:9WQ+-[WJJHJ)O

The 6%“8 ares

S P v
1 35 g;

(1) {1) (4)

The 9£"S'are hermitian: E?T

o
=

A T
ivy iy, Y.
sFTad
(4)  (6)
o, , and e’iz - 1

(S, P, V, A, T are scalar,

pseudocscalar, vector, axial vector, and tensor, respectively.,) These com-

binations will preserve parity.

We can also add other terms:

H = > (P ee)P e (c+¢'¥Y)¥ >+ hoe.
int. 2 L})Piq)N{Wei i o4 541/

If both C and C
2% Yy i

are different from zero, one violates parity.

The coexistence of both is necessary (Wightman, Wigner, Wick).
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If leptonic charge were not conserved, we could still be more generals

i e

o

- ve - g —
i % @ v) { c Wev,)rc's oy

+D (V& Y Y+ 0 (P e‘{qjc)}+ h.co
i ei V i eisb

wheres
ml —— o~ P’
C P - ® _ - -1
qé/ = G Hé/» C==C, CC = lpzk‘s =C‘?AC o
We will see that permutations of the fields will not give anything new,

since algebraic relations exist between the C's for different choices,

The parity transformation is:

N
2“%—2913“:133-3.“:5?9 ?];-.'*P

-

where P is the momentum., If A indicates any of the fields P, N; e, or'V;

then parity exists if there is a transformation of the form:

=2 1 -
AR R A

Which leaves Hint invariant, and also leaves the free particle equations

invariant,

We also haves

o

— _,i&
\PA“ @,t) = LPA (<%,t) YA e A

Nows

Y =Feoy
4L i4 °

and if we have
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‘]~
C'=Dl =03 © (Xt) =iy (Rt

V' (@) = 174,° (Ft),

then Hint is invariant, On the other hand, if

[+

C=D=0, we can choose“P:uN:OZ:V/zéy_V: =2

which again leaves H_ " unchanged,
int,

FCOTNQOTES

The experiment of Davis uses neutrinos from a pile to react in

37 37
D+ 5 et a7

which is pot found. In double beta decay, one looks for

N+N—IP+ P+ o.T e_ o
2 In the Iu-decay9 the /ovalue indicates that the two neutrinos are different;
while the polarization of the XK in 7= M decay indicates that T,_—? /‘*.,_*7/0

[

This, then, is another piece of evidence for lepton conservation,
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LECTURE ON "CONTINUQUS GROUPS AND REFLECTIONS
IN QUANTUM MECHANICS" BY W. PAULI
Notes by R. J. Riddell; Jr.
Radiation Laboratory
University of California
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Spring 1958
LECTURE 16
Formulas regarding permutations.
The invariants are
J = Pey) Fey)
; \PPiWN ‘Pei%
We could permute the fields toc gets
. - —_
E( e, ) e’ ) ]
‘3 i q)P iq;/ Q#e iQ%
Among such permutations there will be linear relationss
S 101 11 1 N/
S S
Qu
DQV
A T =| 6 0 =2 0 6 “QT

g’ 1 -1 1 -1 1 J

The signs chosen here are for c-number fields. For anticommuting fields,
the matrix will be multiplied by (-1).

There is also an identitys:
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2
!_.J

N
i

g 0 4
9 - I e
for g-number fields, Thuss

@) @) - @ v (§

—€|
o
w X
=

= (¢

Pl by )% v - Wpi\%“}&%) Wen;};wND .

This is an algebraic identity., Since it is true as an identity, it will
still be true ifs

=Y.y, o
ARy

UARRRIAARNESUCA A SRUEA D

X/J’S%) (WSVWN) LAY ) (u)e:u /MM o

These particular relations will be important later, From these two identities

we obtain:

These identities are derived by Pauli (1935), and are used by Fierz,

Zs., f. Phys, 104, 553 (1937). They are derived using the Schur identitiesal
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:5_ 3’ =4 % SEK
A=l /” o

By multiplying with a suitable WBD we find:

S A (,BA B
;Z_ szﬁ ' % /¢ ‘Tc«o

From this one can get the tableo2 See also the book of Umezaw{]

We will now introduce a different notation, which is convenient.

R . 1 =Y L _ 1+7 '
s —dy, p° 3 —2 Y
2 2 9
S0
1= L 1+Y
aR = — y & = ——.
2 2
are prcjection operators:
L 2 R L
aRoa =0 (aR = a (aL)z =a o

Then we find33

(Y'U?-f— )()UR.f- mq)LgO o
/Ll

Y'“-i WE+ o 2 o,

L R ,
If m=0, the ) »§ are uncoupled. The canonical commutation relations

4
@WR(?gt)g qu*R(;“yt% = ao(/fR 8(3) (}_().,—;ﬂ)

1% L(S?gt)y kV*L x gt}

are:s

1]
L
o)
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The others vanish, Here, m 1is not necessarily = O,

We must now consider the charge conjugate operators,

c. L 1= Rec
(@) = e =) .
Thus L and C do not commute, nor do R and C.
We will see that for positive energy states(&? corresponds to polarization
of the spin in the direction of the momentum, while for 4) L it is opposite.
. v

We can writes

-

- — R W L
T, z LA ){ A K[GRO Y CLiLPﬂ

int,
i

¢.R e
+ Dniwi )+ DLu(k\)i )j +  hece
1

flore Cc = (C-C") c = (C+cY)
R L

D_= (D - D") DLB(DJr-D") o
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For the "R-Model", GL = DL = 0; while for the "L-Model", CR = DR = 0,

FOOTNOTES
1 This identity is easily derived using the property of the completeness

of the 16'K’A“s9 and the property that
JA By _ o~
Tr (Y°r") = 49 AB,

Thus, any matrix X _can be written

%
- A A
<~ O T
and
(X)) = ic”
so
X =4x,.% Yy, A
Since X 15 arbitrary, we may chocse X~$:;€é<igfejQ to get
49 vy Ay 2 Q.E.D.

x5 " '3t Xo(,é

For example, we calculate the N We have:

V o

A KA M
zzr x;vg (¥ ¥ ), :‘;;2.'5 / ¥ 2
A#*
The right side is clearly that involved in the vector elements. Now,

for A= 1, we just get j;_(stz s 4, and for A 2-16(15) we get

/- - 5
Y z’sx’/‘m =4¥7 .
For the vector parts:

ZY'M‘!VX/; 2y
/LL
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FOOTNOTES
2 (Cont,)

For tensor:

S ¥ = o

/‘~‘\<V
For axial vector:

o= -«'2)’5 v

',LL
ZYYXY
2
Thus we find:

P _ v o (s
y{m £, =2b:p/ T+2(ix5x%, (:1.af5?s”$w~

¥
Yo s o
5 5
R
The remainder of the table may be constructed similarly.
3
-
v, a.g_w m ()

it 52;;)Y51i1= - my, Y
4 e have: {qj (x), ¥ (x”)} =S O‘S(B)(;?g_))

Se
_ 2 (3) =
R{’f {‘4’ ¥ )} (aR)O'ﬂom (aR )/a (x = x)

2 ()8 - F)
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LECTURE ON "CONTINUOUS GROUPS AND REFLECTIONS
IN QUANTUM MECHANICS"™ BY W. PAULI

Notes by R, J, Riddell, Jr.
Radiation Laboratory
University of California

Berkeley, California

Spring 1958

LECTURE 17
Continuation on polarization,
>
é?" \::
= -
> P ] > P
, = -

This holds for positive frequencies:

P gt W >0 .

23
qJNe:L(B"X = wt) w = ,_5,, >0.

Now:s

v. 29 .,

v va 9

R 1-Y I 1+ Y
oI e

The polarization definition depends only on i > O, not the representation.

Now in the 4 x 4 matrices

2 2 =iy L, YD =i)  , -

12 3 2 3 1

and



=133

There is no alternative to this choice for Z_o Thens

Thus:

803

Do/ -
(=) ¢ “15%

But,

R, A=Y _ R
Ty =)’5<\2 )Y = -y

5

L 1+ Y _ L

J

8038 i
°

R R
)Y =y
—

o~
o

N2

E;)WL;::,LPL

W

N

Thus, whether ¥

515

0 =1 0
or

0 =1 0 1

UCRIL--8213
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is not relevant., This would only determine whether positive energy parts

appear above or below. In either cases

.7
_ﬁ
0 o
but in the first choice
- 0
ﬁ
X =
q
0 o/,
while in the second,
-y
o 0
i
2 =
-
0 =T

Now, we had

_ _ R L
fnt, g WPefi\PN) Y Ceety + by

c R c
+0, (kP_I)) + mev )I) + h.co

If m, = 0, the free particle neutrino equations admit a group (canonical
transformation) :
c

! ‘ c c! % *
(1) AL A ALY

where l a12.+ l bl 2 = L. [?he'%% makes the transformation canonical%]
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In terms of R and Ls
1 R R cyR 'L L e L
W 2 ag, - o, 5 W 2al Prv )
(@ o vt M S R (@ Ot st b, St Ot
v = v v ’ v = v * v ’

Thus the transformation is isomorphic to the unitary grou.pl (a duplication
of rotations in three dimensions).
Now if we consider transformations of 42/9 then Hint will be invariant

if we also change the coupling constants at the same time, in such a way that

! # —b* c c' | # %\ c
C, a b \\ R\ L a b .
D' b p_ |3 \p'’ b D
3 =
R a R L & L/
Then H. . will be invariant,?
int, N
We note that | Dp, transforms as Co o
c,* i
L Dy

There is also a second groups

9 i°<Y5 ’
(11) \I{u = e a W‘U 2 (cosx + i)’5 sintx)q)_y
- — 1xx5
= e
Y, = %
Thus:
R? R L? L
LP = eaiWq) ; w = elo( LIJ 5
v v v v
ands

The latter relation is important, since it indicates that the Majorana

abbreviation is compatible with this group (II), It is not compatible
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with the first group (I),

To provide invariance for Hint we must transform ths C's as:

The most general canonical transformation is one that combines I and II.

[%auli doesn’t feel that it is natural 4o combine these two groups.
If there is a natural divisor to a group, he feels that it should be split
off )

Let us now consider the problem of determining the Hinto from the
experiments, In any particular experiment we will generally make averages
over the Hilbert space. The aR9 aL will correspond to projection operators
in this space, The transition probability can on;y depend on such combinations
as appear in Hinto We cannct distinguish between a neutrino or an anti-
neutrino, nor can we distinguish the polarization of the neutrino alcne.

Ws can discriminate between the R and L states.

We have the following as the invariants of the unitary grou.po3
R C..C * D..D *
A5 % “ra®ry T PrelRj
A Y.cc “+po 0 *
ij = "LLLj Li Lj
B.=C D +DC
i RL L] RiLj .

Bij only occurs in doubie beta=decay processes.,

There are certain relations among these invariantss
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* 3
= . = >
By =hyy o B 5A, 20
and4
Ri 2 ) R R
Z .
ij = %11 7y
A L2 o 4 Lyt
1] = T4y
R L
B, 1% < a™a .
ij = i1 3j
It is often convenient to introduce the combinations:
k= "+ah) L o=(-A Sra D)
ij ij ij ij ij ij
# # # #
I..=4%(B,, B ) J =3(-B 4+ B )
UERL T T iy ° 13 g
¥*
[Epe () is a convention in I and %}
Thuss
* *
K.=K  ,L =L , Io=I , J =3
ij ji ij ji ij ji ij ji

There has been a lot of confusion about the C,P, and T invariance.
One could not empirically determine more than the unitary invariants,
though it was customary to use certain "normal forms." The experiments
always depend only on these invariant combinations, This settles certain
controversies in a simple way. One H that can be obtained from another by
such transformations in equivalent as far as the exﬁeriment is concerned.
For instances

A consequence of lepton conservation is
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2D = N
DR L 0 T fo
or:
. = ] = . . I . ° o
Bi;j 0 and Ai,]%d AlQ Aka nvariant condition
FOOTNOTES
R
\PV transforms according to
R R
P, = vT,
..‘/
wherse R
a =b
TfLD R - q)"/c R and UR = 5
v (W) b ax
while
1L L_L
v 4
wherse

a b
i
("b* a* °
=1
Clearly, U* = U  and det U= 1,

In terms of the two component 02 iy introduced previously, we may write the

I H 2
neutrino part of int. as

R L
CR:T. Q‘DV + cLi q{V

where:

Coy = Oy Dyl s Oy = (O Dpyle
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FOOTNOTES
2 (Cont.)
Then

_'R R
Y, = C'g," , and Bint,

will be invariant if
y =] R *®

G = Cre@™ =C @) .
If we write the transformation on the column vectors instead, they will
transform as the complex conjugate matrix rather than the adjoint. This
is the situation in the text,
Since the free particle eq%ffions are invariant under the unitary group,
the momentum, energy, and’zz::;’carried by the neutrino will not differen-
tiate between a neutrino of Q%/Rg for example, and (HVRVO Thus if we keep
Hintc invariant, the experiments will cnly give information concerning
the quantities formed from the coupling constants which are invariant under

the group, These invariants are easily constructed using the two component

notation., If we consider:

e = Cut,

thens
#* 10 3*
c" e
where:s
C* 1
3% -
Cj* = % ;end U =1 o
D
Thus:

g *ﬂ,(CU_l) (UC*);CC*

-
™
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FOOTNOTES
3 (Cont.)
so that
C..C. %z invariant =4 °
Ri TR ariant = 1]
* L
CL:“. QLj = invariant = Aij’
D" Cq
We have seen that % transforms as s however,
Cp, Dp
so alsos
C. D + D C = invariant = B_,
Ri Lj R Lj ariamt = %4y,

Dle note that greup (I) also has

Crs DRj = CRj DRi = invariant, but this is not invariant under

group (II)__:l

4 These relations follow simply from the two component notation, since for

any vector, L_JE (in a positive metric):

2
©. ) 2, 0) 21,27,
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LECTURE ON ®CONTINUOUS GROUPS AND REFLECTIONS
IN QUANTUM MECHANICS™ BY W. PAULI

Notes by R, J. Riddell, dJr,
Radiation Laboratory
University of California
Berkeley, California
Spring 1958
LECTURE 18
We will now consider the normal forms and invariant conditions for various
conservation laws., The normal form can be reached if the corresponding invariant
condition is satisfied. We have already seen the conditions for lepton con=
servation, which may be fulfilled., There is as yet no disagreement with ex-

periment. Now:

Parity conservation (certainly violated):

_ R
L =0 or A = A
ij i3 ij
and:
Invariant cond.
»* »
I J =0 or B =1%B
ij K ij ji
(The + and - are not equivalent.)
Thens
C =¢C ; D =D
Ri Li Ri i
or: Normal form.
i )
C =D, =0,
i i

Chargs conjugation invariance (certainly violated):

L R* %
A S A and Re(I J )= 0
ij 1] iJ kg
Inv, cond.
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Normal forms
C,,=C..*,D . =D 3 InC “InD =ReC ' =ReD ' =0
1= Rt e £ T A e T T
Thus, for the invariantss
K..=K _  , L  =-L
ij ji ij ji
- i -t s i
Iij = llij | e qu =1 | JkQ | e OSx ¢ e

Time reversal invariance (no disagreement with experiment; T ~CP):

R L
A, , A s B are all real,
1] ij ij
Invariant conditions
»*
Im{I,. J )=
i k¢
CR 9 GL 5 DR 9 DL are all real.

Normal form.,

C, C';, D, D' are all real

Majorana abbreviation:

e
P(x) = P (x) Normal form.
[;ll electromagnetic forces must be zero, but m is not necessarily zerég

Now, the combination:

tpc(X) + P (x)

will have an interaction with matter, while

q)c(x) - Plx)

will not., (Thus the latter cannot be said to exist in this connecticn.)
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This then leads to a two state theory:

GR:DRQCLDLO

The invariants can only be used if m = Oo1 Then we find:

The Majorana condition is gompatible with parity. There is no disagree-
ment with experiment then, but if leptons are conserved there will be.
If we consider more restricted two component theories, we can be more

specific, We consider:

R=models A =B =0 Inv. cond,

C. =D =0 Normal form.

The experimentally observed polarization of electrons indicates that the couplings

in this model must be S, T, (P).

L=-model: A =B =0 Inv, cond,

€ =D =0 Normal form.

In this case, the interactions must be V, A°2 In both cases the Majorana

condition is fulfilled,

From these alone, lepton charge conservation does not follow. It is

something new:

2
| Kij | = K (No disagreement)

X
i1 3

These developments are found in the papers of Pursey and Luders in Nuovo cimento.
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We pass now to the spectrum, to see what information can be obtained,
We give the results of the pertinent calculations., The beta spectrum is

given as:

N (E )dE = /a(E)F(aZ E)‘s'(ltb

)dE9
I e e (2”

E
e

where the upper sign correspends to negatons, and the lower to positons,
F(Z})Ee) is the coulomb correction, while (1 £ b me/Ee) is the Fisrz term
(1937), and § is the relevant matrix element. The statistical factor, Ps
was computed independently of Fermi by F., Perrin, who correctly concluded
that m,~ 0. We find a detailed account in the Handbook of Beta and Gamma
Spectroscopy, edited by Siegbahn (see expecially the articles of C. S. Wu,
and M, E. Rose),

We will give the result for non-relativistic nucleons, no coulomb
corrections (F (Z9Ee) = 1>9 and allowed transitions.

For the Fermi-type of transitions, (S, V) A I = 0. For Gamow-Teller
(T, A) AI=o0, x 1, with 00 forbidden., The pseudo=scalar only appears
in the relativistic correction to nucleons. (P "escapes.")

Now, one finds:s

2
(k + KAA)

E:[M, (K +K)+|M°Tol -

2
bS = 2 |u, | "Rk _+ M | " ReK
sv G.T, TA
where the K's are invariant Kij"s° The most important factor in the spectrum
is E ).
J
To compute /D(E ), we needs
e
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2 2
/d_(lpe dp, P, dp_y$(Eo+ m,, - Ee“’E‘u)

where 4 is the element of solid angle between }Z and Ey , and E°+ m.,
will be the change of energy in the nuclear configuration, so that E0 will

be the maximum energy available to E . Now:
e

EJE =pdp , EdE,=pdp, ;

so that

\

- \/ 2 2
/0 ~ peEepyE_V = peEe (Eo+ m, - Ee) -m_y x

*x{(E +m_=E ),
) e

)

ifr m_,= Qs

2
E - o
/ON Pq e(Eo Ee)

Thus we find a quadratic dependence near Ee = E0 o If m,, # 0, there
will be a region for which

EO~E6<< m_,

and here:

P~ peEe mv\,/.?mv(Eo - Ee) o

If m,# O , there is also another factor in the spectrums

mm
1-czps—)e 1<C<1
e V

(See J. R, Pruitt, Phys, Rev. 73, 1219 (1948),)
Langer - Miffat Ehyso Rev. 88, 689 (1952) find for the neutrino mass:

.
m_V < 250 e.veo
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FOOTNOTES

Otherwise the free neutrinc equation is not invariant under the unitary

group a

35

The A 152

experiment, and electron capture in Eu seem to indicate that

the R-model is ruled cut,
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LECTURE ON "CONTINUOUS GROUPS AND REFLECTIONS
IN QUANTUM MECHANICS" BY W. PAULI

Notes by R, J. Riddell, dJr.
Radiation Laboratory
University of California
Berkeley, California
Spring 1958
LECTURE 19

We now set m,= 0, and the spectrum for ﬁ-decay is given by:

=]

1
N_{E )dE = ey tb-L ) dE
F e)d 2 (27753 /° (Ee) s (1 E e °
4 e

where:

= E E = -
Py epv ? peEe(Eo E

RS
o
(i) )
i

! MF; i (Kss ™ Fyy) * } MG.,TOI2 (g ¥ Kypds

v
i

o’
el
il

21w ? & M 1® Rek
{’ F‘ eKSV',GGTQ\ eT% .

The "b" terms are the Fierz termsol These are for allowed transitions. The
pseudoscalar, P, escapes detection in this limit since the non-relativistic
1imit for its nuclear matrix element is zero. The Fermi terms are obtained
from S,V and the Gamow-Teller from T,A. The Fierz terms were given in a
paper: Zs. f£. Phys. 104, 553 (1937). These would influence the shape of the
spectrum for small energies. The experiments indicate that such terms are
either zero or very small. Thus Re KSV = Re KTA = 0, If there is T (or FC)

invariance, the Re can be omitted, sc that KSV = KTA =0 .
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We must now consider other /:'?«-experiments° We will only give the results
of perturbation calculations in terms of the invariants. This is not only

agreeable, but practically useful.

Pclarizetion (of electron)

We define:

where 1 and 2 correspond to spins aligned parallel and anti-parallel to 2,

. . o 1
the direction of motion., One Ilnds2 for ﬁ g

p G
-+ _&
P=z Z M 5
© Q1fbvg)
e
where:
2 2
6r = | M L -L )~+\ M \ L -1L1.).
T ‘ F } ( S8 'l G.T. ( TT AA)

Experimentally one finds G = ~1.0 L 0.1 both for Fermi and G.T. @

although the error is large, G = - 1 is not in disagreement with the experiments.
Then for G,T. :

- + = +
LTT LAA KTT K >

or

since Aii 20, Thus we finds
Lpp = = Kpp o Lpgp gy -

In the same way for Fermi:
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and:

According to these formulas, both P and C are violated, since from Lecture 18,

P requires Lij = 0, and C resquires Lij

The Coulomb corrections require a more detailed discussion, but one

= -L.,, sothat L ,Z =0,
4+ ii

still finds that C,P are both violated.

Much more can be said, We have already obtained inequalities of the

Schwarz types

2
\ A, i < A, A, (for either R or L ).
1] 11 ]l
There follows:
L _ L _— R _— R _ .
AS1 = ATi = Ay, Ay - C for all 1.
L = . K L = - K > L = K L = K R
Si Si ’ Ti Ti 7 Al AL 7 TWH Vs
Thus:
Kpp = = Lpa s Xar = Lpp o
#* *
Therefore, since K., = K_, , L, =L . H
xJ Jx 1j J1

K =L =0,
TA TA

We also find for the pairs TV, SV, SA, TA :

Finally, the only terms which can be different from zero are:

L =X H L., =-K o
AV AV ST ST
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We have not yet used lepton conservation or T invariance, but only G = -1,

Thus the system of possible couplings decomposes into 2 classes:

(4,7)

(8, T, (P) )
From the allowed spectra, we cannot distinguish them.
The choice G = - 1 would imply a two component theory for the neutrino.
This development, however, will not permit one to conclude that the
two-component mcdel must be true, We can make two choices:

R-model: all AOQL =0, K. ==L,, o
ij 1] 1J

This model is compatible with the preceding evidence for 3;T.

L-model: all A, =0, K..=+L .
1. 1] 13

This is compatible with A,V. On the other hand, the polarization experiments
say more than one obtains from an arbitrary 2-component theory. Not only
are KTA = LTA 5000, but they are also zero. This gives a different aspect

of the situation.

We can now conclude for the B's that

since
| By | i1

There are still other experiments to be considered. These include the

ﬁ*’ asymmetry in ejection from nuclei with aligned spins. If & is the
angle between S; and the nuclear spin T , the distribution of electrons
is given by3

1l + Xcos &
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where:
O
< = Zz/ _e A
1 Ee (1t b Mg
pg ir-)
e
and:
= 2 -
Af"")mlMGoTo (Lpp = Tya)
1\t
M1 M o 2 Re (L., - L
+ P 1+1) l Fl] GoTo' (Lgp = Lyp)

where I, I' are the initial and final nuclear spin states. <:'I;> /1
is the polarization of the nucleus, and pe/Ee is of order v/c .
For pure G.T., we get the same evidence as befores
A=z -1,

The quantity A is given by:

/1 g

=71 =1
=¢ 1 —
qII' <I+1 It=1
<____II I' = T+1
+1
FOOTNOTES

I+ might be of interest to indicate how they arise. In computing the spectrum,

one needs the square of the matrix element of Hint between the initial

°

and final states, since the transition probability is

Hinto \f)\z /ﬂ(E>

where /(E) = density of final states. We must average over initial states

and sum over final states which are not distinguished in f?_decay spectra.
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FOOTNOTES
1 (Cont.)
Thus we sum over all neutrino states and over positive energy electron states.

Now, in the non-relativistic iimit for the nuclear matrix element, only

MF = (@Pg lLPN) = (@PgYA &PN)

b7 W)=

= . L <
pPPii N 8ijk(L‘)P?L—quN )

= 0,1y =@, rs Y
Wavn ¥ ) = (Fp, Y2, W)
are different from zero. In terms of the two large components, we thus have:

#*
Moo= Wy Yy

|

2 * 2 2
= en
- | BTt

Terms involving MF cannot interfere with ones involving MC 7.0 since the
nuclear states must be different in the two cases. Let us now congider the
Fermi transitions in a simple case for which CR = CL and DR = DL = 0,

Then on appropriate averaging and summing we gets
2 2 (—
H i = < C + G Y x
I(fl int,,ll)) ’MFJ . Lt"e(sq’—u 5%

(4 "c

# ¥ # ~ ¥
Jre )1;(4»6)}

Now (¢e)* = BA¢;9 and the projection operator for positive energies is

2k
P _xeck +2m 4y

= S (see Lecture 5, p. 6),

and on taking the sums, we obtain:
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FOOTNOTES
1(%mJ( M 3 @§+ﬁm+w) ?
cC. + C.C Tr ¥ = Y
SS VvV A 2w 4)
7
* *y om Kok + Fm+w
+(0C," + CSg) T i " i}

=2 }/(Kss-i— Kny) * 2 Re Kgy (;—:-)7 .
L
Thus we obtain the form indicated., The treatment is similar in the mofe general
case. For positrons, the projection operator would change and the opposite
sign would occur in the second term.

In this case, it is necessary to discriminate between the neutrino spin
states. For simplicity, let us consider a Fermi transition, with only R-type
neutrinos. These will introduce a projection operator (1 - Xs)/Z (see Lec., 17).
In addition, we must introduce o, since P is given in terms of the
expectation value of 0}0 Then we must obtain:

R R 1-7 R*

5 R*
(cs +—cV ‘54)( 5 )(cS + Cy

-
opt+ Am =4
ANESANLLC )

¥
4 2 W

since (—ivixz) 2 S ., On evaluating the trace, we obtain
z

R R¥ R R* Py _P
- - L =-2 -
(Gs % C % ) E,E (Lss Lyy)s

which is the indicated form. The other terms are treated similarly.

3 This result is obtained similarly to the preceding. The principal difference
is that the nuclear elements must be considered for their I dependence,
On carrying out the Tr as previously for summing over electron and neutrino

states, we are left with a form for a pure G,T, transition like:
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FOOTNOTES
3 (Cont.)
\ (f‘\Hinto i)' P \Wpﬁykwﬁ' 1) (f’ +E?%%¢h' i)*x

v (G - i(pe‘ﬂm

k¢ We gk'i'm

)

Using the rotational invariance of the system, the result can only depend
cn cos 8, so that only (pe>,, may enter. The sum over kA may be readily
carried out using the general expressions for the matrix elements of a vector

to give the desired result.
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LECTURE ON "CONTINUOUS GROUPS AND REFLECTIONS
IN QUANTUM MECHANICS™ BY W, PAULI

Notes by R. J. Riddell, Jr,
Radiation Laboratory
University of California
Berkeley, California
Spring 1958
LECTURE 20
. . : €0 C s .
The first experiments in Co , which is a pure G.T., give the asymmetry.
In 00589 which is mixed, one anticipated seeing the effect of the second term,
but it was not found, presumably because l MF,< < \ MG T ) . In the /4- Y angular

correlation experiments, however, such a term was observed. In this case, if

& 1is angle between the momentum of the photon, Bk, and the electron, Bé, and
+1 for right circular polarized ¥'s

T =
-1 for left circular polarized Y's,

then for electric dipole radiation and allowed /9-decay9 we obtain an angular

distribution of the form

1+ ¥cos ©
where:
Pg C
\('-"“”Ur me
e + 4 e
8
and:
I+ 1% I+ 1

1 2
¢t =35 ) t————m ]I“I‘MGOTO' (Lyg = Lyy)

_SI"I\MF' l MGoTol P2 Re (g - Ly

The second term has been observed in Sc46 at Pasadena. If one assumes the
two component theory, then this relation can be used to get the ratio

| ] /

o

M
G.T.
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From the polarization experiments, we deduced that
- E - +
Re (L = Ly,) Re (Ko, * Kyp)
We can get a further relation if we invoke:
(1) Time reversal: This leads to Kij = real,
and

1
(2) Lepton conservations We then obtain

IKAV; - \JKAAOKVV

]KST; - \JKSSOKTT °

§

Although all of the concepts developed up to now are consistent with
the experiments, this does not constitute a proof of their validity.

There are also soms strange, heuristic principles which have been
introduced, and although they are not understood, they seem to work. These
can be traced back to a paper of B, Steck and J, H, D. Jensen: Zs. f. Phys.
141, 175 (1952), This paper was written before the parity violation was
known, and was based on the lack of Fierz terms in / decay.

Theg considered the transformations:

W ' ' AT
Ie ""\(\Ps \?" ‘“’\354"—#

5'e v
and introduced the principie that Hint should be invariant., This leads

o

tc a vanishing of the Fierz terms, since one can then either have [%,T,(éy

or (V,A) in H but not both, K?n overall sign change on transformation

int.?

is irrelevan{ﬂ This principle is not easy to understand, since it is not a

principie of nature, The mass m, is an obstacle since the free particle

equation is not invariant under the Y; transformation. This paper anticipated

the }Aadecay9 since it was predicted that /ﬂ = 3/4 or O for this theory, even
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with parity conservaticn. The Yang-Lee neutrino was given by invariance
under
0
LP.J = ‘K5 4’7/
alone, This gives the parity violation., When combined with Steck-Jensen,
this gives ¢ q =T v ¢,
e 5'e
These principles were considered further by Salam, Sakurai, and Feynman
and Gell-Marn,

If we assume invariance under )’ Y &, we find that to obitain non-
v -~> HE

5
zers resuldts: _
1+ 7 1=
- N 5
— 2).0 R
( 2 ) e [S’T’E’ ( 2 WV
1+ v - 1+,

e U SV
2 e

o

The first choice is the R-modei, and the second, the L-model, Recent experi-
ments seem 55 pick V,A rather than S,T,P,
Thus; we seem tc have:

oo SO0 0200 ) (8 v, 05 vb) + hee.

The sign is difficult. If electromagnetic effects are not considered, the
choice is only a convention. The connection between R,L, and the electric
charge is the guestion.

That the coupling constants are equal does not follow in this formu-
+isn. {See Sakurai) This is no% in a universal form. Pauli feels that
we don't understand the transformation because we don't understand the source

of the weak in%eracticns.
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For further work, see:

Feyrmen and Gell-Mann: Phys. Rev. 109, 193 (1958).

Sakurais  Nuovo cimento 7, 649 (1958).

Another way of looking at the situation (perhaps equivalent to the first)
begins with the possibility of eliminating 2 components in the Dirac equation
by going to a second order equation (see H, A, Kramers: Quantum Mechanics -
German ed. 1938, p. 280, English ed. (ter Haar) 1957, p. 272.)

We find that the Dirac equation can be written:

¥ 2 L R - R
( /J. 5X/u> q)e + m\Pe we

s R L
o, ) +m ERNA o
\ M 9 x/l we lpe

Then, we firnd, on eliminations

R
2 L . L
(g - m%) Smw (5w
qJe e fkaxw- e
2 R R L
(O =-m) ¥ =nw +(b’9-;a{—)w o
e e M A <]
Thus, if we assume that the derivative terms vanish, the equations split,

L
and if wE = 0 , only tpe will be coupled:
8

L

2 L
(Dmm)q)e :mwe °

There is a remark by Heisenberg which is of interest here, He considers

what a theory might be like if it were truly Y5 invariant. Then for all
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fields satisfying

The real worid, however, would only incorporate half of these.

FOCTNOTES

-' ] ) 3
These follow from the invariant condition

Ay e TR B

and

These are readily obtained. From the Dirac equation,

lzu(iﬁ’ LPe +'mu, = W o

we get the first equations by multiplying by (1 & );)/29 where

R L- 3% L 1+ 7,

e 2 8 ’ e 2 e

If the first equation is multiplied by ?; 5%7 , and the second is used to

/A
eliminate the terms in weR . we gets
L
2) R R
7 =) {7 w + aJ
(/* 3371 (/‘ ) Q) q/e /u gxy‘ =

* 1 the indi rest ; 2 2 .
which gives the indicated result, since (E& 7% ) Cﬁu 5% ) = 0O

n p
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LECTURE ON "CONTINUQUS GROUPS AND REFLECTIONS
IN QUANTUM MECHANICS™ BY W, PAULI

Notes by R, J. Riddell, Jr.
Radiation Labgratory
University of California
Berkeley, California
Spring 1958
LECTURE 21
y=meson decays

For M meson decay, we have several choices:

A) etV v ' L have equal leptonic charge,

B) /MP —e_+ V + 7 M3 have opposite lepton charges.
e_, are the same - (from g decay) .

C) M= DB+ VAV No leptonic charge conservation,

The various pcssible interactions ares:

As Hipe, ® ? Wee’qu}L) [Ci(ll)ve’i'{) +C; (4’v9’i7(5 kp_u)] + h.c,
o - = iy T © ] T T C .
B: H , =< (¥ G’ill;) Eli(% & ¥, ) * O, (Q)_u e'i~(5 (pv)] + h.ce
- Ny Y c 1,7 c
C: Hy, = % (We&i%) Gi(lyygi¢v) +C, (-(Pv efing)] + hoc.

It is convenient to introduce the abbreviations:

k :':Cvcﬂﬂ-cﬂc‘,M s k :k*
173 i ¥ ’ ji

1J

S 1, # ' *
7 + ; ° =/
1] CiCj Ci CJ H pij 31
These are noti invariants here.
The computations ofs Kinoshita and Sirlins Phys. Rev. 107, 533 (1957)
Bouchiat and Michel: Phys. Rev. 106, 171 (1957)

give the spectrum for both cases A and B, One findss
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N(E) dE = - mEp Ag(E) E_,
e & 3(2m° e
where:
o 2
- A _ -1 2 )
#(E) =3(E -E)+2f 2B -E - &
- e
s (
& (B -
‘LJ(E S Ee)p
e
ﬁ “mff’*“ez
o = 3
o] ,‘n%&
and
?\:(nsa‘rk )+ 4l + k) + Sk

/2 is the famcus Michel parameter., If £= 0, N(Ee) disappears at the limit
¢

of the spectrum E, = Eg.

The 2-component models (Case A):
Both models give pure V,A intsraction,

R: Ci = “Ci or Ci

11}
(@]
§
Q

e
N
Q
]
(9]
9]
e}
Q
[l
i
(@]
!_‘O
1..
Q
Fi

Then:

o
]
M
«Q
|.Jq,

Ll
S
L

<€
1
o
[
< |
W
o
[
=
<
Wl |
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where a , & are R,L projecticn operators. They satisfy:
Ry - .L L - R
aLPV-LPva . avag l,llva o
We alsc find that
R R R : L
a ¢ = 67 a a® =6 a
S,T,P S,T,P ’ V,A V,A ’
and similarly fer aLGG Thus, in gase A
S, T, P =0,
and cnly V, A are not = O, For the R-model: !ij = —kij , while for the

L-models ¢,, =k, ., » Thuss
i ij

il

H
int,

? (-‘P—eb’e(cvk x CAkYS) 4)/“) {(I)Vk‘{‘plp; + h.ce

R or L, From the Steck - Jensen transformation, if we replace

where K

lPe—ﬁ'i 7%%’ and require invariance, we find:
e

Further, for pure V,A the Michel formula gives

/0:3/40
The experiments give a value slightly less even if radiative corrections are
included, but the disagreement is within the errors.
Case B, Hers, there is definite disagreement with the 2-component model.
Independently of the model, only S,A,P are possible, since
gqulhx P (¢1/%;} = 0, This requires that CB& be skew—symmetricol
Symmetric terms will vanish, This eliminates V,T,

If we also require the R or L model, only S;P are 1eft,2 and

for them
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c,' =¥ ¢y,
where 1i,j = S,P, Thens
z -k 3 R
ij ij
= 1 g L
Qij 513

The Steck - Jensen requirement gives further:

R_,.R L _ L
ctt=zftg¢ . CS =2 F CP o

The two component model, with only S;P, gives = 0 , and so is in disagree=
ment with the experiments. If we do not require the model we can say little,
The value, £ = 3/4 , was predicted by Steck - Jensen, and is independent
of the R2=-component model,
The asymmetry experiments for IS decay are also in good agreement with
the model, If we let © <= angle between the spin of the s and momentum of
the ejected electron, the distribution of electrons is given bys

1t a cos ®

wheres
2
= Pe 4 1me )
aﬁ(Ee)_gguEse- {EomEe"—zS("B-Ee-EO—-B--E: }

)

6 Re FSP - 8 Re };A - 14 1TT

SEY= -6 (Re dy,t o).

§ gives the pclarization of the/u_meson9 0 < t <1l

In Case A for either the R or the L model:
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] -k
, Ky = ¥aa
%’:3//*9),2:”%1{ T k )
A AA
i Re £y e/
R . T T
vV AA aa'A'S AA

The Steck - Jensen condition in additicn gives:s

'V =0 , g=2%1,
In the actual experiments, ® is not measured, but rather & , the
g

. \ A - .
angle between the memenium of the p , and i3 measured,
M9 3 3

M3

The distribution is:

For /f:

&~ - 1/3
The spin of the /kis nct directly measured, so = =t aﬂ since on the basis
of rotaticnal invariance alone, the }xfrom <7 decay can be polarized either
in the directicn of or oppositely to the directicn oflu_o If we believe the
2-component theory, then } CA ! = ' CV ' is not in disagreement with the

experiment.,

FOOTNOTES

;
* This arises froms:

1]
-~

P C 5 (c v |
( k‘)‘V ofi '-(_V) \C ‘n.v) 0/.3 (1)1/>

b

3]

(Voo )
v Y

- (¢

. NEUS A R CE AN

RECRRUSISIICAN ;- CAM

2 For example, with the R model, we have:
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wlBGm
FOQTNOTES
2 (Cont.) .
(o) eete )= ((cae ) e ey )
= (Y Ca" g,

. R . _ ﬂ
since Ca  is skew symmetric, because both C and CYQ are,

Thus, for ¢, <o contribuie, a @, = Gia . This is true only for S,T,FP,

A similar discussicn holds for L,
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LECTURE ON "CONTINUOUS GROUPS AND REFLECTIONS
IN QUANTUM MECHANICS"™ BY W. PAULI

Notes by R, J., Riddell, Jr.
Radiation Laboratory
University of California
Berkeley, California
Spring 1958
LECTURE 22

The Majorana form for the peutrins.

In the Majorana theory:

For the /A-decay, this requires thatt

c.=(C =C =0. =0
.. L = “ s s
v A T T
For such a system, the canonical commutation relaticns are medified. We haves
e *

A 5,50 @-%)

and using the prcjection cperators

it

1l = Té , 1 + 7

N
N

we cotain:

L 3t 3
{}LL (), b L (?“%, = a - 8(j) (X - %)

T L ¥R,
@, yry =
=
However,

%}1«(5?), 1) (2“)’} =z E 8(3) (-3, (not zero)
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since:
where:

Alsog2
L # ‘ 3
vR-E ) ;o =E W,

and so we obtain:

i

L /
phw. ot @) s, s -

@{j ® o,y @) = (Jm)xﬁ s @z

£

in the Majorana theory one cannot obtain an ordinary vector, but only

a pseudc~-vectors
Since

we find for the R-model:
I =2 ¢ Tﬂ oy

while for the L-model

. 3
In particular-s

[
i
i
£
i
=
=
§
=
<

and
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so that we see that is alrsady written as a commutater, as it should be,

Thus:

If we write
Lepton charge = ¥ Q= = j‘deV .
we will have the same for electronss

{1ept.)

i ( Byt B
Qe =7 )[\be :*q’)e} av

-

rThe sign is not definite. If we chocse the minus sign, R carries a minus

+ha

charge, while L carries a plus charge., The situation is reversed for tie
plus signﬂ

The Majorana form plus lepton ceonservation is entirely equivalent to
the two-componert theorv., There is still the right-left freedom. This
situation was stated by Touschek: MNucvc cimentc 3, 1281 (1957) .

In £ decay, we set:

lept.

k=4

iept. -
Q ;Q +Qvo

We can get a Majorana thecry with no lepton conservation by mixing the R
and L,

We might now asks What is the gauge group associated with lepton charge

conservation?
O i

o o 'I s N »
If me has minus signs (Pe =e Ya Lku

[

il
®
€

: jox 1 -] Tg
If Q has plus sign: ¢e =8 Py !yy =z e /4g/o

These are then the gauge transformations for lepton charge. The 75

is needed in the wj equation, since R and L must be separated:
4
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3 R L i L
R =3 , . ix
@V -8 wy Y, —e ¢v .
in the /A decays
A, T e (Corresponds to experiments)
BQ /u_ - e, + 77 + v
The gauge groups are given bys
q - q 3 o4 1 t' ~
A, b = elu¢l 5 ¢ o= e (A b =e I ¥ .
s e M o v v

¥

9 I ! — 3 o ¥
. N 1 L R LR A .
Bo q/e - 2 ‘\-Pe 3 4;,/(- = e Llj_/L’ q)v = S 54)7/ o
The transformations are always given bys
? =3 O¢ ixQ

e

o=

and if o~ is infinitesmal:

[Qs. llq ST Eg k}i:] e

vET xR, o
KQ,..U ] T @]

The prezeding method of writing the current is instructive, since j,

11
i

T
+1{
<

¥

is a pseudovector while je is a vector, This lepton conservation must bring
a parity violation, sincs the sum of an ordinary and a pseudo quantity is
conserved, This is the case in F decay. In the 4 meson case the situation
ig different since we have two neutrinos and there is conservation for M
plus e, and for the u's separately, Thus we can't be sure that P is
violated here,

Finally, we might mention the 7r decay. If we believe in a two=

component theory and lepton conservation, then in the decay

'TT->/A+1/

9
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? e
the s and 7 have opposite lepton charges, and sc for T decay, the neuirino
must be an antiparticle, since the mucn is a particle. Experiments of the
asymmetry and polarization of the electrons in M decay taken together indicate
that the /A" has right handed polarization, We conclude that the Y 1is also
right handed in the decays

T T+ .
Since the v 1ia }ﬁ decay seems to be left handed there is no disagreement

with assuming that the neutrinos in - decay are the same as in F) decay.

FOOTNOTES
1 This feollows from
Ev/ = ¢ L'Dvc =0 w'”
30 thats
(b &, ¢) = - (U, co8 )
ard so CG& must be skew symmetric, thus eliminating V;, T; or }%Ay
X5TU Since ¢% = lpvc , all three cases are alike,
2 From Lecture 163 (W . (LPC)L .
Thuss
E(LL‘R)* = gt
Finallys

2]

Rpay o Eiag 0 Bes R %
{q,% @, ¥, e\xi} {{( @), 5, © )*,2

E vR 8(3) (}—{)_;u)

a
gy

it

(aRE)“ 8(3) (X = 3?”9

F

~J
since E = E . The other case is similar,



A8V

it

0§

i

]

‘P*R u')R -

R
w*) W =

- EaR + aL) ;,]

- 4,* (aR+ aL) ¥

7117'1,3_

FOOTNOTES

454

R L
Yy {a +a)y
5%
L 1
¥ (aR +a )Y

~ Q)* (aR-+ aL) Xé (aR N aL)lP

UCRL-8213
Lecture 22



UCRI-8213

Lecture 23
LECTURE ON "CONTINUOUS GROUPS AND REFLECTIONS
IN QUANTUM MECHANICS"™ BY W, PAULI
Notes by R, J. Riddeli, Jr,
Radiation Laboratory
University cf California
Berksley, Caiifornia
LECTURE 23 Spring 1958
Some further remarks on weak interactions.
The 7 decay has been discussed extensively. In principle, we might
have:
(1) T —>e + vV
{2) T MtV

The former has not been observed, and one has a limit for the rates:
~A=5
tEe)
Rl/R2< -l o
This is not easy to understand, One can introduce intermediate states for the
decays:
T"—> D+ P (—e.. +V
.'-
- rd
T —=p+n U= t+ ’
=
where the first is a strong interaction, and the second a weak one. A pseudo-
scalar (P) interaction is ruled out since it gives predominantly (1), while

an axial vector (A) interaction gives {2)., Thus A 1is better, but one still

finds too much of (1). The calculated ratio is:

2, 2 22
Rl m (mTT - m, ) -
2. ! 10
R m < (m 2. m 4)2
2 poUT

This is larger than the experimental limit.
This difficulty is an open problem. It is not entirely excluded that
there is a direct interaction, T pm+V o but probably there would be other

difficulties., The nature of the masses may be involved in solving the problem.
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my is probably of electromagnetic nature, and the mechanical mass may be zero
(non-electromagnetic approximation.). The mass of the 4 seems to be partly
non-electromagnetic. It is possible that the difficulty here is related to the
difference in the origin of the masses, There are as yet unpublished reports
of Feynman, and of Ruderman and Gatto on the problem.
One must also compare the decays in
m-—>e +Y+V
T—>u + ¥ +V
Again the ratio is less than 10"5° This is also difficult to explain.

o d

J. C. Taylor [ﬁuovo cimento 6, 1226 (l957£] has found that if the I is

( P

€p g'%u 53"PN) 3

/IA

then the ratio is 107 . The coupling

is disfavored by a larger ratio. Pauli doesn't believe that perturbation theory
is permitted for the first stage of the intermediate state calculations. Although
the part of the calculations dependent on the strong interactions drops out in

the ratios, hyperons, for example, could upset the calculatlons.

Brief re decay.
(See J. J. Sakurai: Phys. Rev. 108, 491 (1957). )
The production of A 's is believed to follow a strong interaction like
T+ PN K,
while the decay proceeds via
AC=P +T
in which parity is violated. The spin of the A 1is 4, and its isospin is zero.

The angular dependence of the decay (asymmetry) is given by:
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5o P
T 1+ A
(\G)N <O—A>lpﬂ’| ’
where

, #*

2 Re {Aghp )

x = l 2.+ \ A \2
AS\ T TP
This is a purely phencmenological formula in which AS and AP are the
amplitudes of the emitted S and P states for the «4r's. The experiments
give (from Berkeiey and Venice conference)
o<<5§\>a(0044t0011)5’ ,

- o : P <
where T is a unit vector perpendicular to the plane of production:

- =]

- Lpinc x p,\_l

i , Esznc x -Sj' °

Here, the asymmetry is betiter with gradieni coupling. For

1 T g .
:‘I-‘:r%%f thP (gv+ gy Y5) 13;“&])/\9

int
one finds

, 2
_ ZQW(MAz - Mp ) (Ep(ﬁv)‘F Mb) cos A

2 2 2 2
o) + M M - + M .
[Ep(pﬂ) ] 70 )T )%y

g 1A +
Here, A is given by g, = 8&° ., For cos A =T 1,

x =t 0.89,
A non-gradient coupling;

H =g Y (g+g ' ¥)
ing gﬁ LPpgs gS 5 Le\
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gives f‘E - -
2P L.P\pﬁ) + FPJ cos A

{EP(I?T\') + MP—J < + PT:

and for cos = T 1,

> =¥ 0,10 .
This disagrees with the sxperiments. It is interesting that the gradient coupling
fits better,
It is very significant that the neutriro does not occur here, so that
it cannot be the cause of parity violaticn. The original P violation observed
was in the K decay., The Dalitz anélysis showed that P was violated there

(Phil. Mag. 44, 1068 (153; Bys. Rew 4, 1046 (1954) ). The & and T have the

same lifetime and mass, and identifying them we get a parity violation,

General formalism of the expectation value of two fields.

We will now return to the general theory of the sxpectation value of
two fields. There is an old problem of the connection between spin and statistics:
Integral spin is connected to Bose statistics; haif-integral, to Fermi statistics,
The question was treated by Pauli in many papers, with the stress on free particles.
It is better to ccnsider interacting particles, and this case was taken up again
by Luders and Zumino., The postulate of microcausality was also made in that
field operators at spacelike positions were assumed to either commute or anti-
commute., Tﬁere is one further point: If we permit any arbitrary kind of metric,
then the connection beiween spin and statistics would not follow. Feynman has
shown thet with a very indefinite metric, one can have spin 4+ particles of Bose
statistics., Thus the positive metric plays a role. To obtain the connection

between spin and statistics, we require:



(1)
(2)
(3)
(4)

=17 6=
Inhomogeneous Lorentz group.
Vacuum is the state of lowest energy.
Microcgusality.

Positive definite metric,

In addition, Luders and Zumino postulate:

{5)

The vacuum cannot be identically annihilated.

This seems to Pauli a little artificial.

UCRL=-8213
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LECTURE ON "CONTINUOUS GROUPS AND REFLECTIONS
IN QUANTUM MECHANICS"™ BY W. PAULI

Notes by R. J. Riddell, Jr.
Radia%tion Laboratory
University of California
Berkeley, California
Spring 1958
LECTURE 24
The Liders-Zumino method for the connection between spin and statistics.
As stated previously, we assume:
(1) Lorentz invariance under the inhomogeneocus Lorentz group. No reflection
assumption is made.
(2) The vacuum is the state of lowest energy. Thens
{Ax) a*(xt) % = F (3),
where F(E) is a function of the positive class, A* is the adjoint field to

A, and = x- x ' . As previously

F(E) %3

B

(27r)"‘3 jd‘!*k o4 (ko)‘p(ukok) e

§ alpm) 14,650,

where e(ko) =§6 ko <0
1 ko> 0 o

-

Then F(-¥) = F(¥) for spacelike ¥ , and thus

<A(xV)A*(x)% = <A(X)A*(xﬂ)>o

for spacelike'g . The connection is now essentially derived from a postulate
that microcausality holds,

(3) Microcausality requires either

@ a0, ma)] R0

or € spacelike.

(o) <f{}(x)9 A*(x“%} >% )
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The question is, which one holds? We will show that {a) holds, while (b) leads
to a contradiction.

For hermitian fields (self-adjoint), the proof is simple. For non-
hermitian fields it is not. In the hermitian case, (a) holds as a consequence
of (1) and (2) (see Lecture 11). That (b) does not hold follows from the
positive definite character of the metric.,

(4) If (a) and (b) both hold:
<A(x) A(xY) 2 =0, for spacelike % .
In a positive definite metric, this would require that
Ax) oY=z o0 .
This is not allowed under the Lilders-Zumino postulate #5. For an indefinite
metric, the proof is not so trivial; and is still an open question.

For a non-hermitian field, we have either

(a) L[atx), m(x0)] > = a0, A(X“ﬂ>o

<E&*(x)9 A*(xﬂ)] 2 =0

or
() < {A(xu A*(xn} % = a0, 4] Dy = LB, a0

for spacelike € . This can be carried back to the hermitian case, vias

A:ﬁ%(ﬁ+iAg

1

# = -

A Viul 14,)
where Aq, A2 are hermitian, This is not quite the same as Luders-Zumino.
They require gauge invariance instead of the additional postulate about
[},é] and (}*, Af] » It then follows directly that <:A(x)A(xﬂ) ;> =

. 0

= <<A* (x)A*(x”)>(3 = 0, for all € . Then one can use (3) in the original

form.
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The reason for the Luders-Zuminc argument is that they wanted to consider

the possibility that A, commutes and A_  commutes, but A1 and A2 anti-

2
commute with each other., Liiders showed that a trivial transformation can always
bring one to the commuting form.

The most interesting point seems to be the entering of the positive

definite metric. Whether it can be eliminated is not known.

Let us now ccnsider spinors. We begin a Majorana field. Now:1

B, 6 5 = L AR A
o

since:

il

4jc Elp* =V,

where g(%) is a function of the positive class. We make postulate (4), that

P (¥) =0,
New we definez2
_ d4k
ki%{i+ dki §<O ’ Lch(O) ! k><k ’ (Poc (O), O>= kofO\) (21r)3

and we findg3

4 Z Y@ Y

il

15
12 r(e

e T

r3 SV @ Y = TE FLY

Thus, since F(¥) = F(-¥) for a spacelike % , we see that (b) holds in this
case, (a) and (b) both holding leads to a contradiction with the positive
definite metric, since we would get
) (x) |0 > =0,
b )]0 |
In the non-Majorana case, we must either postulate gauge invariance,

so that



UCRI-8213
Lecture 24
=180=

<di<(x) (J//g ¥ D =<lP°<(X)QDF ¥ > =0,
or meke the analogous assumption to the scalar case above, We then get to the

Mgjorana fields by:

b= 5 (Wb,
_ 1 c
tPII- = W - %),

FOOTNOTES
From Lecture 12, we have: ‘

; _ 4 oI I I 1) -1
<¢°<(x)ll/ﬁ(x)>o = KX%,F + 1:G +b’52f7£§—r" +X5G)2 c]

and from Lecture 4:

<

-1
= = C R
E A

I
Thus, for the F~ term, we have:

-1
- (cawkc )F’/g

If/u= L, we get - 4, while if/u# A

Tr (CYY, ¢ 1) = Tr(¥y, Gc) = -1 (?)/' c ¢y
A 4 H 4 A
~—
= - Tr (\2{/“) =gyo)

Similarly, we find that all other terms vanish.
See Lecture 12,

3 We had:
* 0 - =1 y -1
Cy @ Ny = B RIS

[~}



3 (Cont.)

Now:

P (x') g * (x)

>O
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FOOTNOTES

_ n 1
= <473(x ) (PX(X) >o Becs

- -1 1 x
= B <q;o<(x)¢pﬁ( ) >o

1
i

- .32 -
7T g( =%)
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LECTURE ON "CONTINUOUS GROUPS AND REFLECTIONS
IN QUANTUM MECHANICS"™ BY W. PAULI

Notes by R, J, Riddell, Jr,
Radiation Laboratory
University of California
Berkeley, California
Spring 1958
LECTURE 25
An essential peint in the preceding development was the requirement

of a positive definite metric, To illustrate, we will consider some "anormal®
cases of an indefinite metric., For example, we can obtain Bose statistics and
spin 4, or Fermi statistics and spin zero., The case of an indefinite metric
has been treated in an interesting way by Feynman: Phys. Rev, 1@,»749 (1949) .
This is very short. The discussion was shown to be essentially complete by
Pauli: Prog. Theor. Phys. 5, 526 (1950).

We consider first "anormal® scalar fields, For free particles:

v k

{a, } -1 {b, b*} .-

‘and all other anticommutators are zero. Evidently b* cannotvbe the hermitian

A(x) = = Z—%—J {a(fc’) eikbx + b* (k) e-ikoxj

where:

conjugate to b. Rather, b¥ = - bH ; where bH = hermitian conjugate. The
states will now have norms of oscillating sign, according to the number of

b particles present. .Yl ~ (‘-1)ENLb » The vacuum is defined by

a|o> :b[o> = 0.
<bb*>o=-l°

This last sign is the important one, as it leads to the Fermi statistics,

Thus:
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Now we find for the free fields:
{A(x)g A*(x“‘)} =id(x-x") ,
while the commutator is given by the All function.
For non-free fields, we set:
#*(x! =
<:A(x)A (x') >% F(s) .
If we now require microcausality for the anticommutator, it is necessary that:
! = -
{ax(x)alx') » F(s)
since:
<:{}(x), A*(x“{} >% = F(s) - F(s*),
and this will be zero for spacelike points (s = real.)

It is interesting to decompose A into its self-adjoint parts:

I1
A(x) = ,% (al 4147 A" = Al
3*
A% (x) = V%E (aT = 1 2™ AITT = 4Tt

Let us assume gauge invariance, Then:
0 = 3* # (1 =
Ak > = ) =0

From this follows that
I I IT II
<A (x)A"(x') - & (x)A (x') >o‘

i
(@]
w0

<AI(x)AII(x') + AII(x)AI(x“) >O
Thus:
(enten y = - GMn'ee) ) = - w6)

If we now require microcausality, for anticommutators, we get:

| <AI(x)AI(x“)>O + <AII(x)AII(x“) % + <AI(x‘)AI(x)>o N <AII(x')AII(x)>O

1l
(@]
A
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= G(g) + G(s) + G(s*) +G(s*) = 0 for Y spacelike, where

CEa > = )

Thus,G(s) = O, and <:AI(x)AI(x“);>O = <1AII(X)AII(X");>O =0

for all ¥ . For the cross terms, microcausality gives:
I II II I I II II I
! - (! - 9 '
< (8 (x )>o <A (x)A (x )>o <A (x')A (x) >o + <A (x')A (x)>o

Z - F(s) - F(s) + F(s*) + F(s*) = 0 for ¥ spacelike.
This is automatically satisfied.

The relations for gauge invariance are in the Liders-Zumino paper, and

they can be satisfied for an indefinite metric, as is seen by the specific example

of Feynmen.

The spinor case is quite analogous. For free particles:

_ _J__ - b ikex

+—br*(i) vPr(ﬁ) e_ikoi}

In the "anormal" case; we choose
#» . *oo
[a.r, ar—] = 1 Ebr, er - - l °

The vacuun is given bys

a]o> = b|o> =0
<brbr*2=°'l ’

3*
and again the b states have oscillating norm. Agein b =-Db .

808
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The commutation relation alone does not lead to the indefinite metric, but we
must include the definition of the vacuum, since otherwise we could reverse the
meaning of b and b*¥ as annihilation and creation cperatecrs.
Now:s

SZ(Y;Q% -m) A

and for free particles, we find:

Normal Anormal

<¢R(x)¥7ﬂ(x“)>o = - iSW:; {(x = x') =-=iS°<;(xu-x*’)
<LTJP(XU)%<(X) >o = =18, (x-x') = +1 Sxg (x = x')
R (U= - sud® -0
B0 ] >, == 8eg™ G- x) BREEELYCEED

For non-free spinors, we set:

Normal Anormal
-<¢§(x)®g(x")>o=75‘£§F(s) +Gls) :‘Ja—%F(sﬂ-G(s)
<$F(x) g (x) >o = -X;‘% F(s) + G(s) =Y ﬂ?-% F(s) - G{s)

(¥, @ﬁgxa)} 5. =0 L[000, 4, )] Yy =0

where T is spacelike in the last line. We can again separate the fields into
their Majorana parts, with the same resulis as in the Luders-Zuminc paper. In
the anormal case, it is necessary toc define charge conjugation with an opposite

sign:

ch _ C’-lLT)

i
!
(@]

=

@c
* - S 3
The latter is necessary since |\ 1is no longer the hermitian conjugate., The

decomposition into Majorana parts is carried out using

pl= g (0§
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One can then easily obtain:
#*
1 I
(x) Y x! ;} =0
<, by ) )

*II 11, | _
< G, ) B =0

These are the relations from which one obtains a contradiction with a positive
definite metric, They can be fulfilled with an indefinite metric.
Pauli does not see whether other metrics exist which retain the spin

and statistics connection.
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LECTURE ON "CONTINUOUS GROUPS AND REFLECTIONS
IN QUANTUM MECHANICS" BY W. PAULI

Notes by R, J. Riddell, Jr.
Radiation Laboratory
University of California
Berkeley, California
Spring 1958
LECTURE 26

Generalization cf the CPT thecrem to higher gpins.

The generalization of the CPT theorem to higher spins has a certain
mathematical interest,

We must consider the irreducible representations of 3 dimensional rotations
and of the Lorentz group. The 3D rotations have irreducible representations
of degree 2j + 1, where j = 0, 35, 1, «00o o We must distinguish between
infinitesimal and finite transformations. The former

In 3D, we have:

EIPJQ =13,

The 4D rotation group splits in*o the direct product of two 3D groups,

In the 4D case, we have the operatorsl

Lik = - Lki k=1, 2, 35 4o
Lik’ the angular momentum operator, is a 6-vector. If we defines
=k + = -
My =(Lys* L) Ny = 3Ly - L)
= + N = -
My = 3Ly + L) g5 3(ly - L)
= =1 -
L 2(L12+ LBA) Ny = £(L, L%) »
Thens
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uaeo

iN

]
e 4]

Thus the 4D group is nothing essentially new. The principal difference between

1
O

the Lorentz group and the 4D rotations appears in the reality conditions,

In 3D or 4D rotétions, the J's (or L's) will be hermitian.

For Lorentz transformations, the Lik (i, x =1, 2, 3) will be hermitian,
while L i L~ will be antihermitian, This has the consequence that the
representations of the Lorentz group of finite degree (2j + 1) are non-unitary.

\We consider the 4D rotations., They will be characterized by two numbers
(m, n), and the degree of a representation will be (2m +1){(2n +1). We do

not consider reflections. We find the representaticns:

Type Degree
Scalar (0,0) 1
Spinor (%,0) and (0,%) 2

(Space reflections permute m and n)
Vector (¥,%) : A
Self-dual Tensor (1,0) and (0,1) 3
(The 34 element is, apart from a factor, equal to the 12 element.
- g - ->
In the case of light E +i H, E - i H correspond to self-dual
tensors (plane waves) ).
Symmetric tensor, zero spur (1,1) 9 .
If we consider the multiplication of 2 quantities, we observe that the
direct product is irreducible:
m, ny) * (m,, n,) = «  {myn
(myy my) * (myy mp) = S (mn)
where:

lml—-mzlsm_é_(ml+ m,)
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nl-n2)sn _<_(nl+ nz)o

If we consider now the 3D subgroup, we see that since the LiA operators
distinguish between M and N , in the subgroup m and n will be equivalent.
Thus, we will have the irreducible representations in 3D of

£j&m+n

—_— ) —

|m-n
and the m and n will be mixed, The values of j give a distinction between
the Fermi and the Bose classes., It is only important that Jj is an integer
or half an odd integer, but not m or n separately. Thus:
Fermions: m L n = integer + %
Bosons: m ¥ n = integer.

Pauli found it usefull to divide the representations intc two further partss

Fermions 1 (a) m = int., n = int, + %
1 (b) m = int., + 3, n = int,
N
2(a) m = int., n = int.
Boson:
2(b) m=int. + %, n = int. + 3

Thus we have 4 classes. It is not essential that we deal with the irreducible
representations.
The multiplication of these classes corresponds to the "4-group" of
mathematics; i.e.
1(a) x 2(b) = 1(b)
and so on.

Now, we assign the characters to these classes for the CPT transformation:

2(a) 2(b)
: = ()P = ()@

1 -1

1(a) 1(b)

i () 2 et (1)
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The factor "i" is introduced in this choice to allow for the possibility of realily
conditions on the fields., Such conditions will be of the form:2
(u (n,m) )* = v (myn).
Reality conditions will then be preserved under the transformations with the
"i" present. The reality conditions are important, for example, in constructing
a vector from spinors.
If we apply this transformation particularly to the case u'($,0)* =
u (0,%) , this is equivalent to Y' = i‘r5¢)o
In the Feynman case of spinors with Bose quantization, the reality conditions

are abandoned, and the i's do not appear. There;, the character is simplys

2m
-1,
and (m,n)* is not the Hermitian conjugate, but the adjoint to (myn) .
Now the connection between spin and statistics enters. At first glance,

the above relations do not seem to be satisfied for prcducts of fermions. Con=~

sider a product:

1};[ (mknk)
and
:gE n m N
ns= T = o
k=1 X kZ-l E

Then we obtain for the character of the product:

N 2n
(-1)" -1,
whereas the character as given above should be

(=1) (—l)2n N odd {(fermion)

20 N even (boson)

(-1)
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Thus they don't agree, We have an extra factor:

N-1
(-1) N odd.
(—i)N N even,
A v N(N—-l)
If N = even = 2V, we have (-i)° = (-1) = (-1)7°2 , and we get the same

result for N = odd., Thus, the definition of the character is not true for Cenumbers,
but for g-numbers which are quantized according tc Fermi statistics for half an
odd integer spins and with Bose statistics for integral spin the definition is

N(N-1)/2

;consistent, since the (-1) factor represents the sign associated with

the anticomrmutation of the fermion fields.

Thus we must add the rule of inversion to the usual multiplication law,
and we must assume that all products are symmetrized or antisymmetrized according
to the Bose or Fermi statistics. Thus, for example, a vector would be constructed
ass

ul(%,O) uZ(Op%) - uz(O,%) ul(%SO)

and the transformation would include an extra {-1) because of the inversion.

FOOTNOTES

1 4. Pauli, Phys. Rev. 58, 716 (1940).

2 This follows from the fact that, if u(n,m) transforms according to an operator A

‘u'(n,m) = A(n,m; n',n’) uln®,n’),

then with a suitable ordering of (n,m), u'(m,n)* transforms according to A%
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Berkeley, California
Spring 1958
LECTURE 27
In addition to the field quantities, we alsc have the cccrdinates, and

derivatives with respect to coordinates. The transformation laws alsc hoid for

them, Thus:

The transformations which have been obtained are the ones used for CFT.
It is not essential whether the quantities used are irreducible or not. Thus we
find that any Lorentz invariant equation will remein invariant under a CPT in-
version,l

In the above development we have used the local character of the fields.,
If one introduces form factors (non-local interactions), the situation is not
so simple.

The connection between spin and statistics enters the development with
the symmetrization of products of fields. In the Feynman anormal case with an

indefinite metric CPT also holds, but not in the form given here.

Representation Theory

Let us now consider the representations of the various groups associated
with fields: 3D rotations, homogeneous and inhomogeneous; and lorentz trans-
formations., This discussion will be a summary of a series of lectures which

were given at CERN,



UCRL=-8213
Lecture 27
=193~
We will first consider the infinitesmal transformations. (This means that

the Lie algebra will be involved.) For an n-dimensional rotation group, we

will introduce the operators which generate the infinitesmal rotations:

=z = X, 2= - A, 2 = 1, eeoy M
S =T 3 3%, F 3%, Ap : » 1

Then we find:

e e =S e +95 e__ =0y, € -3 e

b»’ (’"] Yo PPTOPP AT AR TRT TR P

The particular relation for the "e" operators is special, but the commutation
relations associated with the Lie ring are general. The latter may of course

be derived using the special choice for e.

In addition to the rotations, we may wish to include the inhomogeneous

group (translations). A particular choice is:

A9y

The general commutation relations aré then:

Yd) , eﬂ{]: S)/Ad,, - 3,4,

o4

There is always a particular representation in which the d's are zero.

. 2
dy = .7x

0.

We can define:

AR S A

The are then hermitian for a unitary representation of the continuous

v Py
group. There is an important theorem due to Lie: From the representations of
the Lie ring, we get the representations of the entire group. For the repre-

sentations, an important concept is that of invariance.
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One may take two points of view.
(1) Abstract - The commutator is considered as an abstract product.
(2) The operators, a, are related to matrices, A, in which
a—A
[a,b]—ma ~ BA,
Then we get the Jacobi identity:
[a, Eb,,c]] + [:b, E:,ag] + [c, [a,‘rﬂ] = 0,
We see that, in the original abstract approach to the Lie ring quantities such as

2

A2, BY, ... are not defined.

An invariant is a quantity which commutes with all elements of the ring.,

3D rotations.

We set J12 = J3,o°°

Thens

X JQ'J =135, oo
For the homogeneous group,
2 2

2
+ J. +J

2
J° =
Jl 2 3

is an invarian%, since it commutes with Jl’ J2, and JBO
In the inhomogeneous group, we have the relations:

XA [ %) =t ey coe s [P0 9] =0 e
2

The invariants are

-

ped = lel + p2J2 + pBJBQ
4D rotations.

We set:
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Ty =My 5 Iy =My, T =M

= = oJ =
TR IR SHRE Rl

(These are not the same as the relations in lecture 26.)

Then:
2 > 22
i = Juw =% i + 1)
A<V

S
]

=J . +J J_+J7 J =W¥N
41723 42 31 4312

are invariants., The ‘ﬁgﬁr can be decomposed as:
- -,
K=1(+T) T=% (M- N.
Thens
K., L,| =0
[ i’ ;]

@1,15] =1Ly .
For the Lorentz group, the reality conditions lead to
- -
N—i N
Then N' is hermitian and the invariants are:

F=4 (P -1 .

Gl o= (M) .

ig
i
This change in reality conditions leads to the result that the unitary representa-

tions of the Lorentz group are of infinite degree.

Finally, we have the inhomogeneous Lorentz group:

[?19 Ni] i po, 000 KPZB Nik {Pl’ Né] =0y 000
Kpos Nﬂ =i Py oo [po, Mﬂ 05 oo
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The invariants of the inhomogeneocus group include:

We will introduce
=pd, +pdJ, * J
P VA A T
and using a dual notation to defines:

)

(e, st “’3""4 = -1 (g Va0 Vi Vg1

we get:
W, = -
\:WA’ pJ =0 wy Py =0
and
[W/us wﬂ #0 for # v
The second invariant is thus:
W = w,w = - x v v
v 6 kap kau

(p)pk) (/“'U /42/) - JkH Jkyp/u pZ/ e

In the rest system (P > 0),
p=0, P, = im
so the first invariant is:
P= m2 o
For the second, we have:
(ar

9 29 3»”) = m(J23, 31» 129 O)

Hence:
-
W = im x (Angular momentum in rest system).

and
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W= mS(S 1), -Z =8 +1)
where S is the spin, and m # O,
If P = 0, there are two cases:
(a) w=0, Then: L = Apv R and ) 1is essentially the spin.
._,
A =% (po@ =.i'.j
P 0

There are two such representations accerding to the £+ , They correspond to right

and left.

(b) W= 0, (J then has continuous eigenvalues. (Wigner.)

FOOTNOTES

1 For a fuller account of the above developments, see:

Niels Bohr and the Development of Physics, W. Pauli, ed., p.30 £f,

2
2 J* is no longer an invariant. For example:

[Jz, p]] = 2i [szB - JZPB—J o
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LECTURE 28
We give the explicit representations of J, p.

J £tiJ =J ti
1 SR pl P

2 E

Then:

’

EA
[J39 ptj =

b ] 50 By o]
o 2] =E-” R 2%

In the homogeneous group (3D),

b

F=3(+1) where
We can choose J3 diagonal. Then:

(m\JB\m”) =mg_

(m"ft' n") # 0

where f is either J or p. Then one finds:

(jsm} P3|

We define:

p¢ °

QJ_] =295

{py Ji] =tp, .

i=0, %1, o0

only if m"=m! £1

35 m)

(j’ m‘JB\js m) =m

U,mHJjgm—M: VG+m(i-m+1) =

(j,m\J_\j,m+1)=

(3|p| 3

iip m\p,.]j,m-l)
(3] e

VG -n)(j +m +1) = (j, m|p_|Jj, m+1)

SRR
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Also:

(jsm]pBIj +1,m = (j|p|i+1) Vi #m +2)( -m +1)

1)

(,m|p |3+ m Jlpli+) V@ -n+2)(j-n+1)

(j,m[p_|j+lsm+1) - (j)p)j +1) VG+mn+2)(j+m +1)

ﬁ»ﬂpﬂj~1,m (ﬂp]j-n VE+m( -m)

1)

(J, m \EL\ j-1,m - (jl P lj - 1) V(j +m){j +m=-1)

i

(fymfp_|d-Lm+D) = Gp|§-1) VGi-m@G-n+1)
(These had already been guessed before quantum mechanics.)

Up to this point, the commutation relations among the J's and between
J's and p's have been used. The relations among the p's were not employed. If
these are also taken into account, we get a complete representation of the in-

homogeneous group. We define:

(3]s +DG+1]p| D (21+3)+1)240)

1]

Then:

(J|pl3-DG-1]p|) (1 +15-1)=4G-1)

{5?5(— 1) = o} .

Then one gets, using simple algebra,

1, (jp m'[P+ ,p_]‘j, m)=2m ¢(j+l)_¢(j) +(j'p’3)2j)

2j +1

2. (3)25p12+ p22 160 1=+ 0 - 1) 2jj+l
2 |
Ha e 9] 3G+
3. @B =zc= (3|p]d) 3G +2)

(Pauli has not found these in the literature.)
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Now there are various cases:

(2) C=0 Glp|d) =0 g(3)

1}
=
P
(S
i
-
~—
L]
Q
o)
o]
0]
ct

il
ko]

p2

(25 +3)(25 + 1)

|Gle[s+D) I2‘=

There is still the question of the range of Jj. One must prove that the lowest
value of j 4is zero., If we assume that J 2 jo, where jo # 0, then we get a
contradiction in equation 1, since if jo #0, mp¥ O is allowed also. How-
ever, if j, =0, onlym =0 and we cannot conclude that @ (- 1) # O.

(b) The situation is different if C # O, Then:

- () + #( + 1) c?
- + 2 2 =
2j +1 it +1)
and:
(j) - g(j - 1) = C* (= - —% )
pla) - o4 IR (5 +1)°
SO+ 2

Cc
g(3) T 23'17135 = const. = ('13)2 R

as one finds from substituting into the expression for the eigenvalue for p2 o

If we now attempt to obtain the minimum j = jO , we set:

( -l)=oo
g0,
Thus:
2 2 2
CT =
:Iop
2 .
c=1% |p* ;
0
or:
-2 -
=i‘.’_& ::'.i'.j o
0
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Thus as an immediate result of this algebra the angular momentum parallel to
the momentum is quantized. As J — oo, f(j) increases monotonically, and so

@ is not zero for any other J. JO can be either an integer or half an odd

integer.

Lorentz grgupl

Now we have:

g =23
Ok i 4k
and:
-..)
M= (T, 05 3
(239 31’ 12)
- - -» ' e 4
Nz (g Jop 50 [Nl, N2] =-1M, ..

The invariants are:
3 (F - %)
(M-N)

F

G

The development is again pure algebra. There are again two possibilities.

(1) Principal series.

= 2 . _2 = § -V
F=3 -1-7 G=J,
YV 1is real, jo =0, 1, 2, -0
. =1 3
or J, 50 50 o0
There is a special case: jo =0, G=0.

2F = - 1 = 1? < - 1o
A1l representations of the 3D rotations for j > jO are
contained in this series.
(2) Complementary series (or "critical strip" - Pauli) .

G = = Q

Jo
2F = - 1 +x



Y

UCRL~-8213
Lecture 28
=202

This representation is not contained in 1 .

The principal series are oscillating and bounded in the group manifold.
The complementary series are not bounded in the group manifold.

Every function of the group manifold can be expanded in the representation.
There is a theorem due to Weyl:

The Lorentz group is not finite and a complete set is given by only a
part of the unitary representation; one can discard the other., The principal
series is all that is needed. This only holds for finite transformations, not
for the Lie ring and infinitesmal transformations. The physicist usually obtains
only (1), while the purely algebraic method does not distinguish (1) and (2).

There is a connection with the hydrogen spectrum. In it there is more
degeneracy than in a general central force field. The principle quantum number
defines a set of j's which give the same eigenvalues., The degree of degeneracy

2 (spin = 2x). It was shown by Hulthen, Fock, and Bargmann that the com-

is 2n
mutation relations are the same in the discrete spectrum as in the 4D rotation
group. In the continuous spectrum the equivalence is with the Lorentz group,

although only the (n, n) states are realized in the hydrogen atom. In the

continuous group only case (1) is realized: jO =0, G= 0,

FOOTNOTES

1 Gelf and Neumark, Journal of Phys. U.S.S.R. 10, pp. 93=he
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