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Abstract

The Lindblad equation is an evolution equation for the density matrix in
quantum theory. It is the general linear, Markovian, form which ensures
that the density matrix is hermitian, trace 1, positive and completely pos-
itive. Some elementary examples of the Lindblad equation are given. The
derivation of the Lindblad equation presented here is “simple” in that all
it uses is the expression of a hermitian matrix in terms of its orthonormal
eigenvectors and real eigenvalues. Thus, it is appropriate for students who
have learned the algebra of quantum theory. Where helpful, arguments are
first given in a two-dimensional Hilbert space.

1 Introduction

The density matrix ρ is a useful operator for quantum mechanical calcula-
tions. For a given system, one may be unsure about what is the state vector.
If the possible state vectors and their associated probabilities are {∣ψi⟩ , pi},
one creates the proper[1] density matrix

ρ ≡ ∑
i

pi ∣ψi⟩ ⟨ψi∣ (1)

It is hermitian: ρ† = ρ. It is trace 1: 1 = Tr(ρ) ≡ ∑j ⟨φj ∣ρ ∣φj⟩, where
{∣φj⟩} are an arbitrary complete orthonormal set of vectors. It is positive:
⟨v∣ρ ∣v⟩ > 0 for any arbitrary vector ∣v⟩. All these properties can easily be
verified from Eq.(1).

One can use the density matrix to conveniently calculate probabilities or
mean values. If a measurement is set up to result in one of the eigenstates
∣φi⟩ of an operator O, that outcome’s probability is ⟨φi∣ρ ∣φi⟩ and the mean
eigenvalue of O is Tr(Oρ)

Because each individual state vector evolves unitarily under the system Hamil-
tonian H (assumed for simplicity here to be time independent), ∣ψ, t⟩ =
exp (−itH ∣ψ,0⟩, the density matrix in Eq.(1) satisfies the evolution equa-
tion

d

dt
ρ(t) = −i[H, ρ(t)] ⇒ ρ(t) = e−iHtρ(0)eiHt (2)

The operator acting on ρ(0) is often called a superoperator [2] since it de-
scribes a linear transformation on an operator: it operates on both sides of



ρ, so to speak.

The case sometime arises where the system S under consideration is a sub-
system of a larger system S+S′, and S′ is not measured. The pure (so-called
because it is formed from a single state vector) density matrix for the joint
system is

R(t) = ∑
im

Cim(t) ∣φi⟩ ∣χm⟩∑
jn

Cjn(t)∗ ⟨φj ∣ ⟨χn∣

where {∣φi⟩ , ∣χm⟩} are orthonormal bases for S,S′ respectively, and∑im ∣Cim(t)∣2 =
1. By taking the trace of R with respect to S′, one arrives at an improper [1]
density matrix for S from which predictions can be extracted:

ρ(t) = ∑
ijm

Cim(t)Cjm(t)∗ ∣φi⟩ ⟨φj ∣

One can easily see that this is hermitian, trace 1 and positive. However,
while the density matrix of S + S′ evolves unitarily, the density matrix of
the subsystem S evolving under the influence of S′ generally does not evolve
unitarily. Nonetheless, sometimes dρ(t)/dt can be written in terms of ρ for a
range of times earlier than t. Sometimes that range is short compared to the
time scale of evolution of ρ so that one may make an approximation whereby
dρ(t)/dt depends linearly just on ρ(t). This is quite useful, and is what shall
be considered in this paper.

In this case, the evolution equation is highly constrained by the require-
ments on ρ(t), to be satisfied at all times: hermiticity, trace 1 and positivity.
(The latter proves too general to simply implement, so a stronger require-
ment is imposed, called complete positivity - see Section 4).) The result,
for an N -dimensional Hilbert space, is the Lindblad[3] (or Lindblad-Gorini-
Kossakowsky-Sudarshan[4]) evolution equation for the density matrix:

d

dt
ρ(t) = − i[H, ρ(t)]

− 1

2
∼N2−1
α=1 [Lα†Lαρ(t) + ρ(t)Lα†Lα − 2Lαρ(t)Lα† (3)

In Eq.(3), the hamiltonian H is an arbitrary hermitian operator, but the
Lindblad operators {Lα} are completely arbitrary operators.

Actually, as shall be shown, there need be no limitation on the number of
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terms in the sum in Eq.(3), but this can always be reduced to a sum of N2−1
terms.

It is not a necessary condition, but if the equation is to be time-translation-
invariant, the operators are time- independent.

2 Lindblad Examples

Before deriving Eq.(3), we give a few examples of the non-unitary evolutions
it describes. Since unitary evolution is well known, we shall let H = 0. It
shall be seen that relaxation to some equilibrium (constant) density matrix
is readily described.

For simplicity, four of the five examples shall be in a N = 2 Hilbert space (a
restriction that is readily lifted).

A. Random Phases

Consider a state vector written in a basis whose phase factors undergo ran-
dom walk.

Given an initial state vector

∣ψ⟩ = a ∣φ1⟩ + b ∣φ2⟩ (∣a∣2 + ∣b∣2 = 1)

suppose at time t, it has evolved to

∣ψ, t⟩ = aeiθ1 ∣φ1⟩ + beiθ2 ∣φ2⟩

with probability

P (θ1, θ2)dθ1dθ2 =
dθ1√
2πλ1t

dθ2√
2πλ2t

e
− 1
2λ1t

θ21e
− 1
2λ2t

θ22

The density matrix is

ρ(t) = ∫
∞

−∞ ∫
∞

−∞
dθ1dθ

2P (θ1, θ2) ∣ψ⟩ ⟨ψ∣

= ∣a∣2 ∣φ1⟩ ⟨φ1∣ + ∣b∣2 ∣φ2⟩ ⟨φ2∣

+ e−
1
2 (λ1+λ2)[ab∗ ∣φ1⟩ ⟨φ2∣ + a∗b ∣φ2⟩ ⟨φ1∣]
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We see that the off-diagonal elements decay at a fixed rate while the diagonal
elements remain constant. It satisfies

d

dt
ρ(t) = −1

2
[λ1 + λ2] [ρ(t) −

2

∑
i=1

Qiρ(t)Qi]

where the projection operator Qi ≡ ∣φi⟩ ⟨φi∣. To see that this is a Lindblad
equation, note that Q†

i = Qi and ∑2
i=1Q

†
iQi = 1. There are two Lindblad

operators: identify

Li ≡
√
λ1 + λ2Qi

in Eq.(3).

B. Unitary Jump

Suppose in time dt, a state vector ∣ψ, t⟩ has probability λdt of changing to

e−iG ∣ψ, t⟩

(probability 1 − λdt of being unchanged), where G is a hermitian operator
and e−iG ≠ 1. The density matrix at time t + dt is therefore

ρ(t + dt) = (1 − λdt)ρ(t) + λdte−iGρ(t)eiG

so its evolution equation is

d

dt
ρ(t) = −λ [ρ(t) − e−iGρ(t)eiG]

This is of the Lindblad form, with one Lindblad operator

L ≡
√

2λe−iG

In the basis where G is diagonal with elements (g1, g2), we get

dρii

dt
= 0 and

dρ12
dt

= −λρ12(t) [1 − ei(g2−g1)]

So, again, its diagonal elements remain constant. Its off-diagonal elements
decay at the fixed rate

λ[1 − cos (g2 − g1)]

and their phases change.
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C. Random Unitary Transformation

Suppose in time dt a state vector ∣ψ, t⟩ undergoes a unitary transformation
to

e−iGθ ∣ψ, t⟩ = [1 − iGθ − 1
2(Gθ)

2 +⋯] ∣ψ, t⟩
with probability

P (θ)dθ = dθ√
4πλt

e−
1

4πλt θ
2

The density matrix at t + dt ((neglecting terms of order higher than dt) is
given by

ρ(t + dt) = ∫
∞

−∞
P (θ)dθ e−iGθρ(t)e−iGθ

= ∫
∞

−∞
P (θ)dθ [ρ(t) − θ2 [1

2
G2ρ(t) + ρ(t)1

2
G2 −GρG]]

= ρ(t) − λdt
2

[G2ρ(t) + ρ(t)G2 −GρG]

giving the Lindblad equation

d

dt
ρ(t) = −λ

2
[G2ρ(t) + ρ(t)G2 −GρG] = −λ

2
[G, [G, ρ(t)]]

with one Lindblad operator
L ≡

√
λG

In the basis where G is diagonal with elements (g1, g2),

d

dt
ρij(t) = −

λ

2
(gi − gj)2ρij(t)

So, again, its diagonal elements remain constant but its off-diagonal elements
decay at a rate determined by the difference in eigenvalues.

D. State Exchange

Suppose, in time dt, with probability λdt, a state vector ∣ψ, t⟩ exchanges its
basis states ∣φ1⟩ , ∣φ2⟩, becoming σ ∣ψ, t⟩, where ⟨φi∣σ ∣φj⟩ is the Pauli matrix
with diagonal elements 0 and off-diagonal elements 1. It is easy to see that
the density matrix evolution equation is

d

dt
ρ(t) = −λ [ρ(t) − σρ(t)σ]
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and is of the Lindblad form, with one Lindblad operator

L ≡
√

2λσ

The density matrix elements therefore satisfy

d

dt
ρ11(t) = −

d

dt
ρ22(t) = −λ[ρ11(t) − ρ22(t)]

d

dt
ρ12(t) =

d

dt
ρ21(t) = −λ[ρ12(t) − ρ21(t)]

The diagonal density matrix elements change in this ex- ample, decaying
to 1/2. The off-diagonal matrix elements keep their real parts while the
imaginary parts decay to 0.

E. State Transitions

Here we consider arbitrary N . Suppose in time dt, a state vector ∣ψ, t⟩ makes
a transition to state

∣m⟩ ⟨n ∣ψ, t⟩
∣ ⟨n ∣ψ, t⟩ ∣

with probability
Pnm ≡ pmλdt∣ ⟨ψ, t ∣n⟩ ∣2

(pm ≥ 0,∑Nm=1 pm = 1). The probability of all such transitions is ∑mnPmn =
λdt, so the state vector is unchanged with probability 1−λdt. Define Qmn ≡
∣m⟩ ⟨n∣. Note that

N

∑
m,n=1

pmQ
†
mnQmn = 1

The density matrix at time t + dt is

ρ(t + dt) = (1 − λdt)ρ(t) + λdt
N

∑
m,n=1

pmQmnρ(t)Qnm

so its evolution equation is

d

dt
ρ(t) = −λ [ρ(t) −

N

∑
m,n=1

pmQmnρ(t)Qnm]
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This is of the Lindblad form, with N2 (one more than the necessary maxi-
mum!) Lindblad operators

Lmn ≡
√

2λpmQmn

The matrix elements of the density matrix obey

d

dt
ρrs(t) = −λ [ρrs(t) − prδrs∑

n

ρnn(t)]

−λ [ρrs(t) − prδrs]

The off-diagonal elements decay at a uniform rate. The diagonal elements
do not remain constant. They decay to predetermined values pr:

ρrr(t) = ρrr(0)e−λt + pr [1 − e−λt]

This might be useful in modeling the approach to thermal equilibrium, where
the states ∣m⟩ are energy eigenstates and pr is the Boltzmann probability
Z−1 exp (−Er/kT ).

3 Application of Constraints

We now turn to deriving the Lindblad equation as the most general equation
satisfying the constraints.

While the Hilbert space discussed here shall be assumed of dimension N , N
may be allowed to go to to infinity and, also, the argument may readily be
extended to a continuum basis.

To make the argument easier to follow, examples of how its steps apply to a
two-dimensional Hilbert space shall occasionally be inserted.

The Markov constraint is that the density matrix ρ(t′) ≡ ρ′ at a latter time
t′, depends only upon the density matrix ρ(t) ≡ ρ at an earlier time t, not
upon the density matrix over a range of earlier times.

The linearity constraint, combined with the Markov constraint, is that the
matrix elements of ρ′ can be written as the sum of constants multiplying the
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matrix elements of ρ rather than, say, powers of the matrix elements of ρ or
any other kind of function of these matrix elements:

ρ′ij =
N

∑
r,s=1

Air,jsρrs (4)

Here ρ′ij ≡ ⟨φi∣ρ′ ∣φj⟩ with ∣φj⟩ some convenient orthonormal basis and, simi-
larly, ρ is expressed in the same basis. The constraints Air,js can be functions
of t′, t. There are N4 constants, and each can be complex, so there are 2N4

real constants involved in Eq.(4).

The hermiticity constraint ρ′†ij ≡ ρ′∗ji = ρ′ij, applied to Eq.(4), results in

N

∑
r,s=1

[A∗
js,ir −Air,js]ρrs (5)

1. Two-dimensional space: hermiticity

Suppose we have the equation

B11ρ11 +B12ρ12 +B21ρ21 +B22ρ22 = Tr(Bρ) = 0

(the Bij are constants) which holds for all possible density matrices. Then,
one can see B = 0 as follows.

First choose the density matrix ρ11 = 1, with all other elements vanishing:
thus, B11 = 0. Similarly, one shows B22 = 0. Next, employ the density matrix
ρij = 1/2, which results in B12 + B21 = 0. Finally, use the density matrix
ρ11 = ρ22 = 1/2, ρ12 = −ρ21 = i/2, which results in B12 − B21 = 0 and so
B12 = B21 = 0. Therefore B = 0.

The four density matrices used here,

1

2
(1 + σ3) , 1

2
(1 − σ3) , 1

2
(1 + σ1) , 1

2
(1 + σ2)

(written in terms of the Pauli matrices) we shall call the density matrix basis.
Any 2 × 2 matrix can be written as a linear sum with constant (complex)
coefficients of these four matrices. More than that, they form a matrix basis
for hermitian matrices, in that any hermitian matrix can be written as a
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linear sum with constant (real) coefficients of these four matrices. More than
that, and this is the reason for their deployment here, they form a matrix basis
for density matrices, in that any density matrix can be written as a linear
sum with constant positive real coefficients of these four matrices such that
the sum of the coefficients add up to 1. This basis is to be distinguished from
another basis, the Pauli matrices plus the identity matrix, which we shall call
the Pauli+1 basis. This is also a matrix basis for hermitian matrices but it
is not a density matrix basis.

2. N-dimensional space: hermiticity

Generalizing, if we have an equation

N

∑
r,s=1

Bsrρrs ≡ Tr(Bρ) = 0 (6)

for a matrix B, which holds for all valid ρ, then B = 0.

This can be seen by using an N2-size density matrix basis, (generalizing the
22-size density matrix basis of the previous section). First choose ρkk = 1
with all other elements vanishing, which implies Bkk = 0. Then for particular
values of k, l, choose ρkk = ρll = ρkl = ρlk = 1/2 with all other elements
vanishing, from which one finds Bkl+Blk = 0. Finally, choose ρkk = ρll = iρkl =
−iρlk = 1/2, from which one finds Bkl −Blk = 0, so Bkl = Blk = 0. Letting k, l
range over all possible pairs of indices results in B = 0.

3. Two-dimensional space: evolution equation and trace constraint

It therefore follows from Eq.(5) that

A∗
js,ir = Air,js

where each index can take on the values 1 or 2.

A matrix B for which B∗
m,n = Bn,m is a hermitian matrix. Therefore, A is

a hermitian matrix, where we regard the number pairs 11,12,21,22 as four
different indices. That is, A is a 4 × 4 dimensional matrix. The most gen-
eral 4 × 4 hermitian matrix is characterized by 16 real numbers (the four
real diagonal matrix elements and the six complex matrix elements above
the diagonal). Since there are 32 real numbers which characterized the most
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general superoperator in a two dimensional space, the condition of hermitic-
ity of the density matrix has cut that number in half.

A hermitian matrix can be written in terms of its orthonormal eigenvec-
tors and eigenvalues, and that decomposition shall prove very useful here.
There are four real eigenvalues, λα, where α = 1,2,3,4. Corresponding to
each eigenvalue is an eigenvector Eα in the four dimensional complex vector
space.

The four complex components of Eα
ir make 32 real numbers, but they are

constrained. Each eigenvector is normalized to 1: ∑2
i,r=1E∗α

ir E
α
ir = 1 + i0 pro-

vides 8 constraints, lowering the number of free components to 24. The
orthogonality of E1 to the other three vectors provides 6 constraints, the
orthogonality of E2 to the remaining two vectors provides 4 constraints, and
the orthogonality of E3 to E4 provides two constraints. Thus, there are 12
constraints on the 24 free components, so the eigenvectors contain 12 free
components. These, together with the four eigenvalues, comprise the 16 real
numbers characterizing A. An example of such an orthonormal basis is given
by 1/

√
2 multiplying the Pauli+1 basis. If we write the our components of

Eα as a four dimensional vector with components Eα
11,E

α
12,E

α
21,E

α
22], then

E1 ≡ 2−1/2σ1 has components 2−1/2[0,1,1,0], E2 ≡ 2−1/2σ2 has components
2−1/2[0,−i, i,0],E3 ≡ 2−1/2σ3 has components 2−1/2[1,0,0 − 1],E4 ≡ 2−1/2I has
components 2−1/2[1,0,0,1]. It is easy to verify that this is an orthonormal
set of vectors.

Although each Eα is a vector in a four dimensional space, with four com-
ponents Eα

ij, E
α can also be regarded as an operator in the two-dimensional

Hilbert space with four matrix elements Eα
ij. This leads to a neat way of

writing the orthogonality relations for these eigenvectors. Instead of

N

∑
i=1

N

∑
r=1
Eα
irE

∗α
ir = δαβ

we can write
Tr(EαEβ†) = δαβ

where Eβ† is the hermitian conjugate (complex conjugate transpose) of Eβ.
It is easy to see how this works for the example where Eα is 1/

√
2× the

Pauli+1 basis.
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The expression for the components of A written in terms of its eigenvectors
and eigenvalues is

Air,js =
4

∑
α=1

λαEα
irE

∗α
js

Putting this into Eq.(4) results in the evolution equation

ρ′ij =
4

∑
α=1

λα
2

∑
r,s=1

Eα
irρrsE

∗α
js =

4

∑
α=1

EαρEα†

Now, lets impose the trace constraint, i.e., ∑2
i=1 ρ′ii = 1. In terms of compo-

nents this says

1 =
4

∑
α=1

λα
2

∑
i=1

2

∑
r,s=1

Eα
irρrsE

∗α
is

Writing 1 = ∑2
i=1 ρii = ∑2

r,s=1 δsrρrs, the trace constraint can be written as

2

∑
r,s=1

[
4

∑
α=1

λα
2

∑
i=1
Eα†
si E

α
ir − δsr]ρrs = 0

or in matrix notation as

Tr [
4

∑
α=1

λαEα†Eα − I]ρ = 0

where I is the unit matrix. This must hold for arbitrary ρ. We have seen
how to handle such an expression. By successively putting in the four density
basis matrices, we obtain the trace constraint

4

∑
α=1

λαEα†Eα = I

4. N-dimensional space: trace constraint

The N -dimensional case works just like the two-dimensional case. It follows
from Eq.(5) that A can be viewed as an N2×N2 hermitian matrix. It has N2

real eigenvalues. Its N2 complex eigenvectors Eα
ir satisfy the orthonormality

conditions
N

∑
i=1

N

∑
r=1
Eα
irE

β∗
ir = Tr(EαEβ†δαβ (7)

11



With A written in terms of its eigenvalues and eigenvectors, Eq.(4) becomes
the evolution equation

ρ′ij =
N2

∑
α=1

λα
N

∑
r,s=1

Eα
irE

α∗
js ρrs or

ρ′ =
N2

∑
α=1

λαEαρEα† (8)

λα and Eα depend upon t′ − t, but we shall not write that dependence until
it is needed.

Next, imposition of the trace constraint on Eq.(8), with Tr(ρ′) = 1 = Tr(Iρ),
gives

Tr

⎡⎢⎢⎢⎢⎣

N2

∑
α=1

λα − I
⎤⎥⎥⎥⎥⎦
ρ = 0

Using the density matrix basis as in Eq.(6) et seq., we obtain the trace
constraint:

4

∑
α=1

λαEα†Eα = I (9)

By taking the trace of Eq.(9) and using Eq.(7), we find the interesting relation

N2

∑
α=1

λα = N

4 Complete Positivity

The final constraint ispositivity. This says, given an arbitrary N -dimensional
vector ∣v⟩, that the expectation value of the density matrix ρ′ is non-negative.
This constraint, applied to Eq.(8), is

0 ≤ ⟨v∣ρ′ ∣v⟩ =
N2

∑
α=1

λα ⟨v∣EαρEα† ∣v⟩ =
4

∑
α=1

λα ⟨vα∣ρ ∣vα⟩ (10)

where we have defined Eα† ∣v⟩ ≡ ∣vα⟩.

Positivity of ρ ensures ⟨vα∣ρ ∣vα⟩ ≥ 0. Thus, we see from Eq.(10), if all the
λα’s are non-negative, then ρ′ will be positive too.
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However λα ≥ 0, while just shown to be sufficient for ρ′ to be positive, is not
necessary. In the next section, we shall give an example where an eigenvalue
is negative, yet ρ′ is positive!

Therefore, a stronger condition than positivity is necessary to ensure that
λα ≥ 0. This condition, presented after the example, is complete positivity.

5. Two-dimensional space: example of a positive density matrix with
negative eigenvalue

This example uses the Pauli+1 eigenvectors Eα = 2−1/2σα and 2−1/2I. (Note
that the trace constraint (9) is satisfied, provided ∑4

α=1 λα = 2, since the
square of each of the Pauli+1 matrices is 2−1/2I). Choose λ1 = λ1 = −λ3 =
λ4 = 1:

ρ′ = 1

2
[σ1ρσ1 + σ2ρσ2 − σ3ρσ3 + IρI] = [ρ22 ρ12

ρ21 ρ11
]

ρ′ is just ρ with its diagonal elements exchanged. Thus, because ρ is positive,
then ρ′ is positive. This is a particularly simple example of a more general
case discussed in Appendix A.

6. N-dimensional space: definition of complete positivity

t is not positivity but, rather, complete positivity that makes the non-negative
eigenvalue condition necessary. Here is what it means.

Add to our system a non-interacting and non-evolving additional system
in its own N -dimensional Hilbert space. The enlarged Hilbert space is of
dimension N2. The simplest state vector in the enlarged space is a direct
product ∣φi⟩ ∣χj⟩: ∣φi⟩ is a vector from the original Hilbert space, ∣χj⟩ is a
vector from the added system. The general state vector in the joint space is
the sum of such products with c-number coefficients.

Form an arbitrary density matrix R for the enlarged system. Suppose it
evolves according to Eq.(8), where Eα is replaced by Eα×I (i.e., the evolution
has no effect on the vectors of the added system.) Complete positivity says
that the resulting density matrix R′ must be positive.
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7. Two-dimensional space: complete positivity

Complete positivity says, given the evolution equation (8), that ⟨w∣R′ ∣w⟩ ≥ 0
for an arbitrary N2 dimensional vector ∣w⟩ and for any initial density matrix
R in the enlarged Hilbert space. We wish to prove that complete positivity
implies the eigenvalues are non-negative. What we shall do is judiciously
choose a single vector ∣w⟩ and four pure density matrices R so that the
expressions

⟨w∣R′ ∣w⟩ =
N2

∑
α=1

λα ⟨w∣EαREα† ∣w⟩

are ∼ λβ, with a positive constant of proportionality. Therefore, for complete
positivity to hold, λβ must be non-zero. Here are choices that will do the
job.

We shall choose the maximally entangled vector

∣w⟩ ≡
4

∑
r=1

∣φr⟩ ∣χr⟩

(⟨w ∣w⟩ = 4, but it need not be normalized to 1). We construct the state
vectors

∣w⟩β ≡
4

∑
i,j=1

E†β
ij ∣φi⟩ ∣χj⟩

and use them to make four pure density matrices ∣ψ⟩β ⟨ψ∣β
. (Note that

tr(∣ψ⟩β ⟨ψ∣β ) = 1 because of the orthogonality relation Eq.(7)). Then, for
one β

R =
4

∑
i,j,i′,j′=1

E†β
ij E

β
j′i′ ∣φi⟩ ∣χj⟩ ⟨φi′ ∣ ⟨χj′ ∣
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Putting this into Eq.(8), the complete positivity condition is

0 ≤ ⟨w∣R′ ∣w⟩ =
4

∑
α,r,r′,i,j,i′,j′=1

λαE†β
ij E

β
j′i′

× ⟨φr∣ ⟨χr∣Eα ∣φi⟩ ∣χj⟩ ⟨φi′ ∣ ⟨χj′ ∣E†α ∣φr′⟩ ∣χr′⟩

=
4

∑
α,i,j,i′,j′=1

λαEα
ijE

β
j′i′E

†β
ji E

†α
i′j′

=
4

∑
α=1

λαTr(E†βEα)Tr(EβEα†)

=
4

∑
α=1

λα(δαβ)2 = λβ

(using the orthogonality relation (7)).

Thus, complete positivity implies λβ ≥ 0.

8. N-dimensional space: complete positivity

We follow the same procedure in the N -dimensional case. However, to be a
bit more general, we shall use an arbitrary vector ∣w⟩, and an arbitrary pure
density matrix R:

∣w⟩ ≡
N

∑
m,n=1

Dmn ∣φm⟩ ∣χn⟩ (11a)

R ≡
N

∑
k,lk′,l′=1

CklC
∗
k′l′ ∣φk⟩ ∣χl⟩ ⟨φk′ ∣ ⟨χl′ ∣ (11b)

where Ckl,Dmn are yet to be specified complex constants. The unit trace of
ρ in Eq.(11b) requires Tr(C†C) = 1. Then, the complete positivity condition
is

0 ≤ ⟨w∣R′ ∣w⟩ =
N2

∑
α=1

λα ⟨w∣EαREα† ∣w⟩

=
N2

∑
α=1

λα
N

∑
k,lk′,l′,m,n,m′,n′=1

D∗
m′n′DmnCklC

∗
k′l′E

α
m′kE

α∗
mk′δn′lδl′n

=
N2

∑
α=1

λαTr[CD†Eα]Tr[Eα†DC†] (12)
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Now, choose DC† = Eβ, for any particular β. This choice can be made in
many ways. Two are C† = Eβ, D = I (the choice made in the two-dimensional
example just discussed) or D = Eβ, C = N−1/2I (note, both choices respect
Tr(C†C = 1). With this choice in Eq.(12), and with use of the orthonormality
conditions Eq.(7), we obtain as the consequence of complete positivity:

0 ≤
N2

∑
α=1

λα(δαβ)2 = λβ (13)

for 1 ≤ β ≤ N2.

5 Kraus Representation

We have now applied all the constraints needed to obtain a valid density
matrix ρ′ at a later time t′ from an earlier density matrix ρ at time t. This
relation is Eq.(8), supplemented by the orthonormality conditions (7), the
trace constraint (9) and the condition of non-negative eigenvalues (13). It is
customary to define Mα ≡

√
λαEα, so that Eqs.(8, 9) can be written in terms

of Mα alone:

ρ′ =
N2

∑
α=1

MαρMα† (14a)

N2

∑
α=1

Mα†Mα = 1 (14b)

(However, the orthonormality conditions, written in terms of Mα, now de-
pend on λα). Eq.(14a) is called the Kraus representation and {Mα} are
called Kraus operators[5].

We have proved the necessity of the Kraus representation, but it is also suf-
ficient. That is, for any {Mα} satisfying Eqs.(14a,14b), even for more than
N2 operators, also with no orthonormality conditions imposed, all the con-
straints on ρ′ are satisfied. It is easy to see that hermiticity, trace 1 and
positivity are satisfied. Complete positivity requires a bit more work, and
that is given in Appendix B.

This general statement of the Kraus representation might seem to imply a
larger class than we have derived as necessary, but that is not so. Since the
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Kraus representation is hermitian, trace 1 and completely positive, it may
be written in the form Eq.(8), as we have shown.

6 Lindblad equation

Now that we have satisfied all the constraints on the density matrix ρ′ ≡ ρ(t′),
we can let t′ = t + dt, and obtain the differential equation satisfied by ρ(t).
For the rest of this paper we shall only treat the N -dimensional case since
the argument is precisely identical for the two-dimensional case, except that
N = 2.

A. Eigenvectors and eigenvalues when t′ = t

First, lets see what we can say about the eigenvectors and eigenvalues when
t′ = t. Then, Eq.(8) says

ρij =
N2

∑
α=1

λα
N

∑
r,s=1

Eα
irE

α†
sj ρrs or

0 =
N

∑
r,s=1

⎡⎢⎢⎢⎢⎣

N2

∑
α=1

λαEα
irE

α†
sj − δriδjs

⎤⎥⎥⎥⎥⎦
ρrs = 0 (15)

As we have done before, successive replacement of ρ by the N2 members of
the density matrix basis results in

δriδjs =
N2

∑
α=1

λαEα
irE

α†
sj (16)

Multiply Eq.(16) by Eβ
js and sum over j, s. Use of the orthonormality relation

(7) gives
δriTr(Eβ) = λβEβ

ir (17)

If Tr(Eβ) ≠ 0 and λβ ≠ 0, Eq.(17) says that all the eigenvectors are ∼ I.
But only one of a set of orthogonal eigenvectors can be proportional to the
identity. Therefore, for the rest of the eigenvectors, λβ = 0 and Tr(Eβ) = 0.

Call one eigenvector EN2 ≡ N−1/2I. From Eq.(17), we find the associated
eigenvalue λN

2 = N .
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For β ≠ N2, the eigenvalues vanish. Note that the condition Tr(EβI) = 0
says that these eigenvectors are orthogonal to EN2 ∼ I.

And, indeed, in this case, Eq.(8) becomes the identity

ρ(t) = Iρ(t)I = N 1√
N
Iρ(t) 1√

N
I (18)

B. Eigenvectors and eigenvalues when t′ = t + dt

When t′ = t + dt, the eigenvalues and eigenvectors change infinitesimally.
Accordingly we write

λN
2(dt) = N[1 − cN2

dt], λα(dt) = cαdt (α ≠ N2)

EN2(dt) = 1√
N

[I +Bdt],Eα(dt) =Kα (α ≠ N2) (19)

where the cα are constants. We do not include a term ∼ dt in the expression
for Eα(dt) since, because λα(dt) ∼ dt, it would contribute a negligible term
∼ (dt)2 to Eqs.(8,9).

Because the eigenvalues must be positive, and because the eigenvalues sum
to N (equation following Eq.(9)), we see that cα ≥ 0 (all α). B and Kα are
restricted by the orthonormality conditions, which we shall look at later.

C. The evolution equation

Putting Eqs.(19) into the evolution equation (8) gives

ρ(t + dt) = [1 − cN2

dt][I +Bdt]ρ(t)[I +B†dt]

+ dt
N2−1
∑
α=1

cαKαρ(t)Kα† or in the limit dt→ 0

d

dt
ρ(t) = −cN2

ρ(t) +Bρ(t) + ρ(t)B† +
N2−1
∑
α=1

cαKαρ(t)Kα† (20)

Putting Eqs.(19) into the trace constraint (9) gives

[1 − cN2

dt][I +B†dt][I +Bdt] + dt
N2−1
∑
α=1

cαKα†Kα

cN
2

I = B +B† +
N2−1
∑
α=1

cαKα†Kα (21)
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Using (21) to replace cN
2

in (20) (specifically, cN
2
ρ = (1/2)[cN2

Iρ + ρcN2
I])

results in

d

dt
ρ(t) = [1

2
(B −B†), ρ(t)]

− 1

2

3

∑
α=1

cα[KαKα†ρ(t) + ρ(t)KαKα† −Kαρ(t)Kα†] (22)

D. The Lindblad equation

If we define −iH ≡ (1/2)(B† −B) and Lα =
√
cαKα, the evolution equation

(22) becomes the Lindblad equation (3):

d

dt
ρ(t) = −i[H, ρ(t)]

− 1

2

N2−1
∑
α=1

[LαLα†ρ(t) + ρ(t)LαLα† − 2Lαρ(t)Lα†] (23)

E. Orthonormality conditions

It is a consequence of this derivation that the Lindblad operators Lα in
Eq.(23) are not arbitrary operators, because they are restricted by the or-
thonormality conditions (7). Putting Eqs.(19) into Eq.(7) constrains B, Kα.

For what follows, we recall from the discussion in section 2 that {Kα} can
be regarded in two ways. In one way, they are regarded as N2 − 1 oper-
ators acting on vectors in an N dimensional space, with matrix elements
Kα
ij (i, j = 1...N). In the other way, they are regarded as N2 − 1 vectors

in an N2 dimensional space, each with components (Kα
11,K

α
12, ....,K

α
NN). In

particular, the trace of two operators is the same as the scalar product of
two vectors, as in Eq.(7).

The orthonormality relation (7), applied successively to (α = β = N2),
(α ≠ N2, β = N2), (α ≠ N2, β ≠ N2), with use of Eqs.(19), are

Tr[B +B†] = 0 (24a)

Tr[Kα] = 0 , (α = 1, ...,N2 − 1) (24b)

Tr[KαKβ†] = δαβ , (α,β = 1, ...,N2 − 1) (24c)
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Eq.(24a) says that the hermitian part of B vanishes. This provides no re-
striction at all on H, which is the anti-hermitian part of B.

Eq.(24c) says that the vectors Kα are orthonormal.

Eq.(24b) says that Tr[KαI] = 0, which implies that N−1/2I completes the
orthonormal set.

F. The general Lindblad form

We shall now show that the Lindblad equation (23) with arbitrary Lind-
blad operators (no constraints whatsoever) can be transformed to new, con-
strained, Lindblad operators of Eq.(22) by adding a constant (achieving the
vanishing trace constraint (24b)) followed by a unitary transformation(achieving
the orthogonality constraint (24c)).

First, we see that we can transform the arbitrary Lindblad operators Lα to
Lindblad operators L′α which are traceless. Define Lα ≡ L′α + kαI, where
the kα are N2 − 1 constants, and substitute that into the Lindblad equation,
obtaining :

d

dt
ρ(t) = −i[H + i(kαL′α† − kα∗L′α), ρ(t)]

− 1

2

N2−1
∑
α=1

[L′αL′α†ρ(t) + ρ(t)L′αL′α† − 2L′αρ(t)L′α†] (25)

With a redefinition of H, this is again the Lindblad equation, expressed in
terms of L′α. By choosing kα = N−1Tr[Lα], the new Lindblad operators
satisfy Tr[L′α = 0].

Now write the N2 − 1 Lindblad operators Lα (hereafter assumed traceless)
in terms of N2 − 1 new operators L̃β (α,β = 1, ....,N2 − 1) using the linear
transformation

Lα =
N2−1
∑
β=1

Uα,βL̃β (26)

We ask what the matrix Uα,β must be in order that the Lindblad form be un-
changed (L̃α replacing Lα in Eq.(23)). With arbitrary operators A1,A2,A3,

N2−1
∑
α=1

A1L
αA2L

α†A3 =
N2−1
∑

α,β,β′=1
Uα,βU∗α,β′A1L̃

βA2L̃
β′†A3
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The three terms in the Lindblad equation have two of the A = 1 while the
third A = ρ). This equals

N2−1
∑
β=1

A1L̃
βA2L̃

β′†A3

leaving the Lindblad equation unchanged in form, if and only if the matrix
Uα,β is unitary,

N2−1
∑
α=1

U †β′,αUα,β = δβ,β′

Inverting Eq.(25), we see that L̃β is traceless.

Now, consider the matrix Tr(LαLα′†). It is hermitian, so its eigenvalues are
real and its eigenvectors are orthogonal. It can be brought to diagonal form
by properly choosing our unitary transformation, so we obtain

Tr(L̃βL̃β′†) =
N2−1
∑
α=1

U †β′,αUα′,βTr(LαLα′†) = c̃βδββ′ (27)

This is almost the orthogonality constraint (24c). The eigenvalues c̃β are
non-negative, since it follows from Eq.(26) that

c̃β = Tr(L̃βL̃β†) =
N

∑
i,j=1

LβijL
∗β
ij ≥ 0

Thus, according to Eq.(26), the L̃β are orthogonal vectors, with squared
norm c̃β. We can add one more vector ∼ I to complete the set, orthogonal
to the rest since Tr(L̃βI) = Tr(L̃β) = 0.

We can define new operators K̃β which are orthonormal and traceless, by
L̃β ≡

√
c̃βK̃β. In terms of these operators, the Lindblad equation (23) written

in terms of L̃β becomes

d

dt
ρ(t) = −i[H, ρ(t)]

− 1

2

N2−1
∑
α=1

c̃α[K̃αK̃α†ρ(t) + ρ(t)K̃αK̃α† − 2K̃αρ(t)K̃α†] (28)

This is precisely Eq.(22) with K̃α, c̃α, replacing Kα, cα. Moreover, the or-
thonormality constraints Eqs.(24b,24c) on Kα are satisfied by K̃α.
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G. Concluding remarks

We have shown that the constraints on the density matrix ρ′ mandate its
evolution equation (22), where cα ≥ 0 and B,Kα satisfy the constraints (24).
We then showed that this is completely equivalent to the Lindblad Eq.(23),
with no constraints at all on the N2 − 1 operators Lα.

However, there is no need to restrict the Lindblad equation to no more than
N2−1 operators. We conclude our presentation by showing that the Lindblad
equation with any number of operators has all the required properties. (Of
course, from what we have shown, such an equation may be reduced to one
with no more than N2 − 1 operators).

Looking at the Lindblad equation in that case,

d

dt
ρ(t) = −i[H, ρ(t)]

− 1

2
∑
α

[LαLα†ρ(t) + ρ(t)LαLα† − 2Lαρ(t)Lα†] (29)

it is easy to see that hermiticity, and trace 1 (in the form dTr(ρ(t))/dt = 0,
with Tr(ρ(t0)) = 1 are satisfied. Complete positivity requires a bit more
work. We have shown in Appendix B that complete positivity holds for the
Kraus form (14a) subject to the trace constraint (14b), with an arbitrary
number of operators. So, if Eq.(28) can be written in the Kraus form with
the trace constraint, we have shown it is completely positive.

Accordingly, we write Eq.(28) as

ρ(t + dt) = [I − dt(iH + 1

2
∑
α

Lα†Lα)]ρ(t)

× [I − dt(−iH + 1

2
∑
α

Lα†Lα)] + dt∑
α

LαLα† (30)

Identifying the Kraus operators as

M0 =
⎡⎢⎢⎢⎢⎣
I − dt

⎛
⎝
−iH + 1

2

N2−1
∑
α=1

Lα†Lα
⎞
⎠

⎤⎥⎥⎥⎥⎦
, Mα≠0 =

√
dtLα (31)

gives the Kraus operators as

ρ(t + dt) = ∑
α

Mαρ(t)Mα† (32)
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Now, take the trace of Eq.(31). Since Eq.(28) implies Tr(ρ(t + dt)) = 1 =
Tr(Iρ(t)), the result is

1 = tr (∑
α

Mα†Mαρ(t)) or Tr (∑
α

Mα†Mα − I)ρ(t) = 0 (33)

As we have done before, by successively replacing ρ(t) by the members of
the density matrix basis, we obtain the Kraus trace constraint (14b):

Tr (Mα†Mα) = 1 (34)

Therefore, the Lindblad form with an arbitrary number of Lindblad opera-
tors, is completely positive.

Appendix A: A Class of Positive Density Matrices With Negative Su-
peroperator Eigenvalues

Consider the Pauli+1 matrices (multiplied by 1/
√

2) as the eigenvectors Eβ.
As noted in Section 4, they satisfy the trace constraint (9) if ∑4

α=1 λα = 2.
Eq.(8) becomes

ρ′ =
4

∑
α=1

λαEαρEα†

= 1

2
[λ1σ1ρσ1 + λ2σ2ρσ2 + λ3σ3ρσ3 + λ4IρI]

= 1

2
[(λ

1 + λ2)ρ22 + (λ3 + λ4)ρ11 (λ1 − λ2)ρ21 − (λ3 − λ4)ρ12
(λ1 − λ2)ρ12 + (λ3 − λ4)ρ21 (λ1 + λ2)ρ11 − (λ3 + λ4)ρ22

] (A1)

Now, we can successively replace ρ by the four density basis matrices, and
demand that the λα be chosen so ρ′ is positive for all. Since the sum of
these four ρ’s with positive coefficients (adding up to 1) is the most general
two-dimensional density matrix, then the most general ρ′ will be positive.

The first density basis matrix has ρ11 = 1 and the rest of the matrix elements
vanishing. Then,

ρ′ = 1

2
[(λ

3 + λ4) 0
0 (λ1 + λ2)] (A2)

Since the eigenvalues of the density matrix must lie between 1 and 0, we
obtain the two conditions:

2 ≥ λ1 + λ2 ≥ 0 (A3a)

2 ≥ λ3 + λ4 ≥ 0 (A3b)
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The second density basis matrix, with ρ22 = 1 and the rest of the matrix
elements vanishing, gives the same results.

The third density basis matrix is ρ = (1/2)[I + σ1]. Using ∑4
α=1 λα = 2 to

simplify the result, we obtain:

ρ′ = 1

2
[ (1 (λ1 + λ4 − 1)
(λ1 + λ4 − 1) 1

] (A4)

The eigenvalues of ρ′ here are (λ1 + λ4)/2,1 − (λ1 + λ4)/2, so the condition
that they lie between 0 and 1 is

2 ≥ λ1 + λ4 ≥ 0 (A5)

The fourth density basis matrix is ρ = (1/2)[I + σ2]. Using ∑4
α=1 λα = 2 to

simplify the result, we obtain:

ρ′ = 1

2
[ (1 i(λ2 + λ4 − 1)
−i(λ2 + λ4 − 1) 1

] (A6)

The eigenvalues of ρ′ here are (λ2 + λ4)/2,1 − (λ2 + λ4)/2, so the condition
that they lie between 0 and 1 is

2 ≥ λ2 + λ4 ≥ 0 (A7)

So, we have obtained the result that ρ′ will be positive if Eqs.(A3a, A3b,A5,A7)
and

4

∑
α=1

λα = 2 (A8)

are satisfied. The sum of Eqs.(A3b, A5, A7))minus (A8) tells us that 2 ≥
λ4 ≥ −1.

Eq.(A8) and the constraint boundaries are three- dimensional hyperplanes in
the four dimensional λ-space. Their intersections delineate the allowed areas
for the eigenvalues.

We shall be content here to set λ2 = λ1 (in which case Eqs. (A3a) simplifies
to 1 ≥ λ1 ≥ 0). Then, Eq. (A8) describes a plane in {λ1, λ3, λ4} space, and
its intersection with the constraint boundary planes can be drawn. This is
shown in Fig. 1.
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Figure 1: Allowed regions of eigenvalues for a positive density matrix ρ′.
The two dark-outlined triangular regions are where an eigenvalue is negative.
They abut an isosceles triangle, the restricted region of complete positivity,
where all the eigenvalues are positive.

There are two regions where one of the eigenvalues is negative and the other
two are positive: the points in the heavily outlined upper left triangle have
λ3 ≤ 0, and the points in the heavily outlined lower right triangle have λ4 ≤ 0.

Appendix B: Complete Positivity of the Kraus representation

The Kraus form Eq.(14a) and the Kraus constraint Eq.(14b), generalized to
any number of arbitrary operators Mα, are respectively

ρ′ = ∑
α

MαρMα† (B1a)

∑
α

Mα†Mα = 1 (B1b)

We want to show complete positivity. Call any one of the Mα ≡ M. If we
can show complete positivity for MρM† for an arbitrary M, then Eq.(B1a),
which involves a sum of such terms, will be completely positive. And, it is
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only necessary to prove complete positivity for R = ρ × ρ̃µ, where ρ̃µ is any
possible basis density matrix (described in the paragraph following Eq.(6)) in
the added Hilbert space, since the most general density matrix in the direct
product Hilbert space is the linear sum of such terms.

We now calculate
⟨v∣R′ ∣v⟩ = ⟨v∣MρM† × ρ̃µ ∣v⟩ (B2)

for arbitrary

∣v⟩ =
N

∑
m,n=1

Dmn ∣φm⟩ ∣χn⟩

There is no loss of generality if we pick the basis vectors ∣χn⟩ in the added
Hilbert space any way we like. We shall pick them to be the eigenstates
of ρ̃µ. Now, we note that each ρ̃µ has one eigenvalue 1 and the remaining
N − 1 eigenvalues are 0. Call the eigenvector ∣χ1⟩ which corresponds to the
eigenvalue 1. Then,

⟨v∣MρM† × ρ̃µ ∣v⟩ =
N

∑
m,m′=1

D∗
m′1Dm1 ⟨φm′ ∣MρM† ∣φm⟩

= [
N

∑
m′=1

D∗
m′1 ⟨φm′ ∣M]ρ [

N

∑
m,=1

Dm1M
† ∣φm⟩] ≥ 0 (B3)

Therefore, the Kraus form with arbitrary Mα’s is completely positive.
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