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1 Overview: stochastic process

A. A stochastic process is a collection of random variables { Xy, t € T'}.

B. A sample path or realization of a stochastic process is the collection
of values assumed by the random variables in one realization of the
random process, e.g., the sample path z, x5, 3, ...., when X7 =21, X5 =
X9, X3 = x3,.... We may speak of the probability of a realization, and
we mean P(X; =21, Xy = x9, X3 =13, ....), for example.

C. The state space is the collection of all possible values the random vari-
ables can take on, i.e., it is the sample space of the random variables.
For example, if X; € [0, 00) represent random times for all 7, then the
state space of the stochastic process is [0, c0).

D. Often, the index set T is associated with time, sometimes even when
it does not actually represent time. In this description, the stochastic
process has a state that evolves in time. For example, the process may
start in state X; = 3, then evolve to state X5 = 4, and much later enters
the state X099 = 340. The index set may also be associated with space,
for example T = R? for the real plane.

E. Classifying stochastic processes.

Stochastic processes can be classified by whether the index set and state
space are discrete or continuous.

State Space
discrete continuous

Index discrete
Set continuous

discrete time Markov chain (dtmc) not covered
continuous time Markov chain (ctmc) diffusion process




1. Random variables of a discrete time process are commonly written
X, where n=0,1,2,....

2. Random variables of a continuous time process are commonly writ-
ten X (t), where t € T', and T is often, though certainly not always
[0, 00).

F. Short history of stochastic processes illustrating close connection with
physical processes.
1. 1852: dtmc invented to model rainfall patterns in Brussels

2. 1845: branching process (type of dtmc) invented to predict the
chance that a family name goes extinct.

3. 1905: Einstein describes Brownian motion mathematically
4. 1910: Poisson process describes radioactive decay

5. 1914: birth/death process (type of ctmc) used to model epidemics
G. Relationship to other mathematics

1. mean behavior of the ctmc is described by ordinary differential
equations (ODEs)

2. diffusion processes satisfy stochastic differential equations (SDEs),
from stochastic calculus

Introduction to Discrete Time Markov Chain
(DTMCQC)

A. Definition: A discrete time stochastic process {X,,,n =0,1,2, ...} with
discrete state space is a Markov chain if it satisfies the Markov prop-
erty.

P(Xn = Znp((] = iﬂyXl = 7;17 ""7X7L*1 = infl) = P(Xn = in|Xn71 = Z'nfl)
(1)

where 7 for all k = 0,1, ..., n are realized states of the stochastic process.

B. Brief history



1. Markov chain named after Andrei Markov, a Russian mathemati-
cian who invented them and published first results in 1906.

2. Andrey Kolmogorov, another Russian mathematician, generalized
Markov’s results to countably infinite state spaces.

3. Markov Chain Monte Carlo technique is invented by Metropolis,
Rosenbluth, Rosenbluth, Teller and Teller in 1953 in statistical
physics. Allows simulation/sampling from complicated distribu-
tions/models.

C. Definition: one-step transition probabilities p?j’"”
The one-step transition probability is the probability that the process,
when in state ¢ at time n, will next transition to state j at time n + 1.

We write
pﬂjml = P(Xn+1 = ]|Xn = Z) <2>

ij

1. 0< p?j’nﬂ < 1 since the transition probabilities are (conditional)

probabilities.

2. X720 p?j’"” = 1 since the chain must transition somewhere and
summing over all 7 is an application of the addition law for a set
of disjoint and exhaustive events.

D. Definition: time homogeneity

When the one-step transition probabilities do not depend on time, so
that

n+1
PZM = Dij (3)
for all n, then the one-step transition probabilities are said to be sta-
tionary and the Markov chain is also said to be stationary or time

homogeneous.

E. Definition: one-step transition matrix or transition matrix or
Markov matrix The one-step transition matriz, P , is formed by
arranging the one-step transition probabilities into a matrix:

Poo Po1 DPo2
p-= Pio P11 P12 - (4)
P20 P21 P22



1. P is a square matrix, possibly of infinite dimension if the state
space is countable.

2. The rows sum to 1, by properties of one-step transition probabil-
ities given above.

F. Examples

1. A simple weather forecasting model

Let X; be an indicator random variable that indicates whether it
will rain on day i. The index set is T' = {0, 1,2, ...} It is discrete
and truly represents time. The state space is {0,1}. It is clearly
discrete.

Assume that whether it rains tomorrow depends only on whether
it is raining (or not) today, and no previous weather conditions
(Markov property).

Let a be the probability that it will rain tomorrow, given that it is
raining today. Let 3 be the probability that it will rain tomorrow,
given that it is not raining today.

The Markov matrix is

(5 179) )

2. A slightly more complex weather forecasting model

Suppose that you believe that whether it rains tomorrow is actu-
ally influences not only by whether it is raining today, but also
by whether it was raining yesterday. At first glance, it seems that
you cannot use a Markov chain model for this situation, since the
future depends on the present as well as the past. Fortunately,
by redefining the state space, and hence the future, present, and
past, one can still formulate a Markov chain.

Define the state space as the rain state of pairs of days. Hence,
the possible states are (0,0), indicating that it rained today and
yesterday, (0, 1), indicating that it rained yesterday and did not
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rain today, (1,0), and (1,1), defined similarly.

In this higher order Markov chain, certain transitions are imme-
diately for- bidden, for one cannot be allowed to change the state
of a day when making a transition. So, for example, (0,0) cannot
transition to (1,0). As we move forward in time, today will be-
come yesterday, and the preceding transition suggests that what
was rain today became no rain when viewed from tomorrow. The
only transitions with non-zero probability are shown below, where
the order of states along the rows and columns of the matrix are

(0,0),(0,1),(1,0),(1,1).

0.7 03 0 O
0 0 04 06
P= 05 05 0 O (6)

0 0 02 08

Note in the preceding, the probability of rain after two days of
rain is 0.7. The probability of rain after one day of rain followed
by one day of no rain is 0.4. The probability of rain after only one
day of rain is 0.5. Finally, the probability of rain after two days
of no rain is 0.2.

. The random walk

A Markov chain whose state space is 7 = 0, 1, £2, .... is a random
walk if for some 0 < p < 1, where

Dii+1 =P = 1 — Pii-1 (7>

One useful application is to gambling models.
. DNA models

Analogous DNA models can be formulated. Here the state space
for the simple, first-order model is {0, 1,2,3}, where 0 may repre-
sent A, 1 may represent C', 2 may represent (G, and 3 may represent
T. The state space for the slightly more complex, second-order
model is {00,01,02,03,10,11,...}, which has 42 possible states.
Higher order models are also possible, with a corresponding in-
crease in the number of states. While it might not seem intuitive
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why such a model could possibly describe a DNA sequence (think
human genome for instance), a little thought can suggest why it
might work better than an even simpler model. Suppose 1 ask
you to predict for me the 10th nucleotide in a sequence I have
just obtained for a gene in the human genome. You can come
up with some kind of prediction based on what you know about
nucleotide content of the human genome, but if I also told you the
9th nucleotide of the sequence, you may be able to make a better
prediction based on your knowledge not only about the nucleotide
content of the human genome, but knowledge about behavior of
segments of the sequences (codons), for example. Indeed, it is not
hard to show that a first order Markov chain often fits DNA se-
quence data better than a Independent and identically distributed
random variables model.

. Automobile insurance

Suppose auto insurance costs are determined by the a positive
integer value indicating the risk of the policyholder, plus the car
and coverage level.

Each year, the policyholder’s state is updated according to the
number of claims made during the year.

Let s;(k) be the state of a policyholder who was in state ¢ and
made k claims last year. These are fixed numbers determined by
the insurance company. Randomness enters via the number of
claims made by a policyholder.

Suppose the number of claims made by a policy holder is a Poisson
random variable with parameter A\. Then, the transition proba-
bilities are

AP
Pij = Z € /\E <8>

k:s;(k)=j

Consider the following hypothetical table of s;(k):



Next state if
State | Annual Premium | 0 claims 1 claims 2 claims > 3 claims
1 200 1 2 3 4
2 250 1 3 4 4
3 400 2 4 4 4
4 600 3 4 4 4

Suppose A = 1. Using the above table we can compute the transi-
tion probability matrix

0.37 0.37 0.18 0.08
037 0 037 0.26
P=1"0 037 0 063 (9)

0 0 037 0.63

Chapman-Kolmogorov Equations

. Definition: n-step transition probabilities

pi; = P( Xk = J| X, = 1) (10)
for n > 0 and states i, .

By analogy to the 1-step case, we can define n-step transition proba-
bility matrices P = (p7}).

. Result: Chapman-Kolmogorov equations

P = ) Dibi (11)
k=0

for all n,m >0 and for all states i, j.



Proof:
pii ™ = P(Xpam = j|1Xo = 1)

= Z P(Xn+m =j7Xn = k|X0 = Z)P(Xn = k|XO = Z)

k=0

M8

P(Xoim =J|Xn =k, X =1)
k

Il
o

M8

Ph;Pik (12)

T
=

C. Additional Results:

1. Another compact way to write Chapman-Kolmogorov equations:
plnm) = pn) p(m) (13)

2. By induction,
pm = pn (14)

D. Examples

1. Simple Forecasting Model
Suppose a = 0.7 and 8 = 0.4, so
0.7 0.3
P= (0.4 0.6) (15)

What is the probability that it will still be clear in 4 days, given
that it is clear today? We need P2.

0.61 0.39
2_p.p_
P (0.52 0.48) (16)
and
05749 0.4251
4_p2 p2_
P (0.5668 0.4332) (17)

The entry we seek is pj; = 0.5749, so there is approximately a 57%
chance that it will be clear in 4 days.
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2. More Complex Forecasting Model

Now, compute the probability that it will rain on Saturday given
that it rained today Thursday and didn?t rain yesterday Wednes-
day.

07 0 03 0\ (07 0 03 0
05 0 05 0| o5 0 05 o0
0 04 0 06|70 04 0 06
\ 0 02 0 08 0 02 0 08

(0.49 0.12 0.21 0.18
0.35 0.20 0.15 0.30
0.20 0.12 0.20 0.48
0.10 0.16 0.10 0.64

P® = p2-

4 Unconditional probabilities

In order to compute unconditional probabilities, like “What is the probability
it will rain on Tuesday?”, we’ll need to define the initial state distribution.
A Markov chain is fully specified once the transition probability matrix and
the initial state distribution have been defined.

A. Definition: initial state distribution

The initial state distribution is a probability distribution defined over
the first state of the chain Xj.

P(Xo=i) = oy (19)
forall =0,1,...
B. Now we can compute unconditional probabilities.

1. Computing probability of state j at particular time n:

P(X, = j) = 2P(Xn X = 1)P(Xo=1) = ipzzai (20)



2. Computing probability of a chain realization:

P(XO = Z'O;XI = il, 7Xn = Zn)
= P(XO = ’L())P(Xl = 1:1|X0 = Z())P(XQ = i2|X0 = io,Xl = Zl)
~P(X,|Xo =0, X1 = in1) (21)

The Markov property allows us to simplify

P(XO = io,Xl = il, ,Xn = Zn)
= P(XO = Zo)P(Xl = Z:1|X0 = Zo)P(XQ = 7:2|X1 = Zl)
P(Xn|Xn_1 = in—l) (22)

and finally we obtain
P(XO = 7:07 Xl = 7:17 ceey XTL = Z7’L) = aiopioilphig'npinflin (23>

C. Example. Using the simple weather forecasting model, what is the
probability that it will rain on Monday given that there was a 90%
chance or rain today?

P(Xy=1) = agpl, + onp?, = 0.10x0.4251 +0.90 x 0.4332 = 0.43239 (24)

5 Irreducible chains
A. Introduction: classification of states

Note, define the 0-step transition probabilities as follows

1 1=y
p?j:{ . j (25)

0 i+

1. Definition: State j is said to be accessible from state i if pj; > 0
for some n > 0.

2. Definition: Two states i and j are said to communicate if they
are accessible to each other, and we write i < j.

a. The relation of communication is an equivalence relation, i.e.,

- Reflexive: i < ¢ because p;; =

10



- Communicative: If i < j then j <1
- Transitive: If i < j and j < k, then i < k.
b. This equivalence relation divides the state space of a Markov
chain into non-overlapping classes.

3. Definition: A class property is a property of the state that if true
of one member in a class, is true of all members in that class.

B. Definition: A Markov chain is #rreducible if there is only one equiva-
lence class of states, i.e., all states communicate with each other.

C. Examples:

1. The Markov chain with transition probability matrix

11 9
i1
P=l3 1 3 (26)
0 1 2
3 3
is irreducible.
2. The Markov chain with transition probability matrix
P00
P=11 1 1. (27)
4 4 1 1
0001

has three classes {0,1} and {2} and {3} and is not irreducible.

D. 1. Definition: A transition probability matrix P is regular if there
exists an n, such that P has strictly positive entries, i.e., pi; >0
for all 7,5 > 0.

2. Claim: a Markov chain with a regular transition probability ma-

trix is irreducible.

Note that for the n where P >0, pj > 0 for all 4,7 > 0, hence all
states 7 in the state space communicate with all other states j.

3. Method: One way to check for irreducible Markov chains is to
roughly calculate P2, P4, P8, .... to see if eventually all entries are
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strictly positive. Consider, the 3 x 3 matrix from the first example
above.

P-=

(@R NIENNT[E
QI [ =N =
Wk = O

First, encode entries as + or 0 and call this encoded matrix Q.

+ 0
Q=+ + + (28)
0 + +
Then,
+ + +
Q* =+ + + (29)
+ o+ o+

Therefore, the Markov matrix P is irreducible.

6 Recurrence and transience

Let f; be the probability that starting in state i, the process reenters state ¢
at some later time n > 0. Note, this concept is related but different from the
concept of accessibility. In the example below, 0 <> 1, but the chain is not
guaranteed to return to 0 if it starts there,so fy < 1.

s
I

(30)

O =N
= O NI

o= O

A. Definitions related to recurrence and transience.

1. Definition: If f; =1, then the state i is said to be recurrent.

2. Definition: We define the random variable R; to be the first
return time to recurrent state ¢

3. Definition: A recurrent state is positive recurrent if it recurs with
finite mean time, i.e., E[R;] < co.
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4. Definition: In contrast, a recurrent state is null recurrent if it
recurs only after an infinite mean wait time, i.e., E[R;] = oo.

Note: Null recurrent states can only occur in infinite state Markov
chains, for example the symmetric random walks in one and two
dimensions are null recurrent.

5. Definition: State i is said to be an absorbing state if p; =1. An
absorbing state is a special kind of positive recurrent state.

Absorption is the process by which Markov chains absorb when
absorbing states are present.

6. Definition: If f; <1, then the state ¢ is a transient state.
B. Claims and results related to recurrence and transience.

1. Claim: A recurrent state will be visited infinitely often.

Suppose the recurrent state ¢ is visited only 7' < oo times. Since T’
is the last visit, there will be no more visits to state ¢ after time
T. This is a contradiction since the probability that ¢ is visited
again after time 7' is f; = 1.

2. Claim: The random number of times a transient state will be
visited is finite and distributed as a geometric random variable.

Consider a chain that starts in state ¢. Then, with probability 1 -
fi 20, the chain will never re-enter state ¢ again. The probability
that the chain visits state ¢ n more times is

P(n visits) = (1 - f;) (32)

where we recognize the pmf! of a Geometric distribution. The
expectation of the Geometric distribution is finite.

3. Theorem: State i is recurrent if ) ;7 pl’ = oo and transient if
Y1 Dy < 0.

Proof:

la probability mass function (pmf) is a function that gives the probability that a
discrete random variable is exactly equal to some value.
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1 if X, =1
L={ | ' (33)
0 if X, %1

indicate whether the chain is in state ¢ at the nth time point.

Then -
> In
n=1

is the total number of visits to state ¢ after chain initiation. Take

[ = n]
n=1 n

NgK

E(I,| X =1)

Il
—_

M

P(Xn = Z|X0 = ’l)

S
I
—

I
Nk
3
<3

(34)

S
1l
—

. Corollary: If state 7 is recurrent and j communicates with 7, then
J 1s recurrent.

Proof:
Because ¢ and j communicate, there exist m and n such that
pii>0 , pj>0 (35)

By Chapman-Kolmogorov,

PR > okl (36)

Sum over all possible &
DD pRpllt Y ph = 00 (37)
=1 k=1

. Claim: Recurrence (positive and null) and transience are class
properties. This result is an obvious consequence of the above
Corollary.

14



6. Claim: All states in a finite-state, irreducible Markov chain are
recurrent. Because some states in a finite-state Markov chain must
be recurrent, in fact all are recurrent since there is only one equiva-
lence class in an irreducible Markov chain and recurrence is a class
property.

7. Claim: Not all states can be transient in a finite-state Markov
chain. Suppose there are N states in the state space of a finite-
state Markov chain. Let N; be the finite number of visits to state
0<t< N-1. Then after zﬁ;l N; steps in time, the chain will not
be able to visit any state ¢ =0,..., N — 1, a contradiction.

C. Examples:

1. Determine the transient states in the following Markov matrix.

o o0 31

035 0 0 0
0 10 0 (38)
0 10 0

Verify that all states communicate, therefore, all states must be
recurrent and the chain is irreducible.

2. Determine the transient, recurrent, and absorbing states in the
following Markov matrix.

%%000

L1090 0

2 2

00411 0 (39)
003 o 4tood

This chain consists of three classes {0,1}, {2,3}, and {4}. The
first two classes are recurrent. The last is transient.

3. Suppose the transition probability matrix were modified as
0 00

(40)

Bk O O
= O O NN
O wI-NI= O

0
% 0
5 0
0 3
Then, there are four classes {0}, {1}, {2,3}, and {4} and the first
two are recurrent absorbing states.

15



Periodicity of Markov chain

. Definition: The period of state i is the greatest common divisor of
all n such that p}; > 0. In other words, if we consider all the times at
which we could possibly be in state i, then the period is the greatest
common divisor of all those times.

If the state ¢ can be revisited at any time, then the period is 1.

If the state ¢ can be revisited every two time points, then the period is
2.

If the state i can never be revisited (i.e., diagonal entry in that ith row
is 0), the the period is defined as 0.

. Definition: A Markov chain is aperiodic if every state has period 0 or

1.
. Example:
Confirm the period of the following chain is 3.
0 01
P=|1 00 (41)
010
Ergodicity

. Definition: A state is ergodic if it is positive recurrent and aperiodic.

B. Claim: Ergodicity is a class property.

. Definition: A Markov chain is ergodic if its states are aperiodic and
positive recurrent.

Example
Random walk on the integers with transition probabilities:
Pigr1 =P =1=Diia (42)
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All states communicate with each other, therefore all states are either
recurrent or transient. Which is it?

Focus on state 0 and consider },”; pf,. Clearly,
pa=0 , n=12 ... (43)
because we cannot return to 0 with an uneven number of steps.

Furthermore, we can only return to 0 in 2n steps if we take n steps
away and n steps toward, so

Po6 = (2:)p”(1 -p)" (44)
Employing the Stirling approximation
nl ~n"12e7 /2 (45)
where a,, ~ b, if lim,,_ e ‘;—Z = 1. Therefore,

2 [4p(1-p)]"
00 Jn

By definition of ~, it is not hard to see that }.,>; pf, will only converge
if

(46)

i 4p(1 p)] ‘o (47)

But 4p(1 - p) <1 except when p = 1. Thus, if p=1, then Y02, piy = o0
and the chain is recurrent, otherwise Y, pj, < oo and the chain is
transient.

One may also show that the symmetric random walk in two dimensions
is recurrent. However, all random walks in more than 2 dimensions are
transient.

17



10 First-Step Analysis

A. Preliminaries

We discuss first-step analysis for finite-state discrete time Markov chains
{X,,n >0}. Label the finite states 0,1,2,..., N = 1. There a total of N
states.

Generically, the technique of first-step analysis can be used to solve
many complex questions regarding time homogeneous Markov chains.
It solves the problem by breaking the process into what happens in
the first step and what happens in all the remaining steps. Because
stationary Markov chains are memoryless (the future is independent
of the past) and probabilistically constant in time, the future of the
chain after the first step is probabilistically identical to the future of
the chain before the first step. The result is a set of algebraic equations
for the unknowns we seek.

First-step analysis, in its simplest form, answers questions about ab-
sorption into absorbing states. Therefore, suppose S = {Sy, S1, ..., SN_r_1},7 <
N are all the absorbing states in a Markov chain. Based on our under-
standing of recurrence and transience, it is clear that the chain must
ultimately end up in one of the absorbing states in S. There are details

we may wish to know about this absorption event.

1. Definition: The time to absorption T; is the time it takes to enter
some absorbing state in S given the chain starts in state 1.

7= min{X, > rlXo = 1) (48)

2. Definition: The hitting probability for state S; € S is the prob-
ability that a Markov chain enters state S; before entering any

other state in S.
Uik: = P(XTz = ]{3|X0 = Z) (49)

In addition, remember our trick for answering the question “What is
the probability that the Markov chain enters a state or group of states
before time n?” Often, while the original Markov chain may not have
any absorbing states (i.e., S = &), questions about the Markov chain
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can be reformulated as questions about absorption into particular states
or groups of states. In this case, one constructs a novel Markov chain
where certain states are converted into absorbing states.

. Technique: Finding the probability that a Markov Chain has entered
(and perhaps left) a particular set of states &/ by time n.

1. Construct a new Markov chain with modified state space transi-
tion probabilities

1 ified j=i
qi; = 0 ifiEJZf,j#:Z' (50)

pi; otherwise

The new Markov chain has transition probability matrix ¢ — (g;;)
and be- haves just like the original Markov chain until the state
of the chain enters set /. Therefore, both chains will have the
same behavior with respect to the question.

2. Example. Suppose a person receives 2 (thousand) dollars each
month. The amount of money he spends during the month is
i=1,2,3,4 with probability P; and is independent of the amount
he has. If the person has more than 3 at the end of a month, he
gives the excess to charity. Suppose he starts with 5 after receiving
his monthly payment (i.e. he was in state 3 right before the first
month started). What is the probability that he has 1 or fewer
within the first 4 months? We will show that as soon as X; <1,
the man is at risk of going into debt, but if X; > 1 he cannot go
into debt in the next month.

Let X; <3 be the amount the man has at the end of month j.

The original Markov chain matrix is infinite, which makes the
analysis a little tricky.

p=|- 0 P, P, P, P, 0 (51)



To answer the question, we would define the modified Markov

chain
0O 1 0 O 0
Q' = 0O 0 1 0 0 (52)
0 P P B P

0 0 ]?4 }33 fé + }ﬂ

but we can’t work with an infinite matrix. To proceed, we note
that if we start with X; > 1, then we can only enter condition
X; <1 by entering state 0 or 1. For example, the worst state > 1
the man can be in the previous month is 2. He then earns 2 and
spends, at most, 4 with probability P,, to end up, at worst, with
0. In short, we claim that states {....,—2,-1} are inaccessible in
the modified Markov chain, so we can ignore them to get a finite
and workable matrix

1 0 0 0

o 1 0 o0

62 B }?4 }%3 fﬁ f%
0 P P B+P

(53)

Suppose P; = % for all i = 1,2,3,4. We compute Q* for the first
four months

1 0O 0 O
0O 1 0 0
Q4 =] 93 129 13 21 (54)

256 256 256 256
36 165 21 34
256 256 256 256

The man started in state 3. The probability he ends in state

<1 by the 4th month is % + % = % ~ 0.79, where we sum the

probability that he first goes to state <1 via 0 (£%) or via 1 (32).
C. Standard form of Markov matrix.

Assume that of the N states 0,1,...,r — 1 are transient and states
r,...,IN —1 are absorbing. If the states are currently not in this or-
der, one can re-order and re-number them, so that they are.

With this ordering of the states, the Markov matrix is in the standard
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form, which can be written as
(@ R
P= ( 0 I (55)

where we have split P into 4 submatrices: @) is an r x r matrix, R is
an v x N —r matrix, 0 is an N —r x r matrix filled with 0’s and [ is
an N —r x N —r identity matrix. An identity matrix is a matrix with
1’s along the diagonal and 0’s elsewhere, for example the 2 x 2 identity

matrix is
10
r=(o 1)

(System-of-equations solution)

D. Time Until Absorption.

1. Sub-Questions: many similar questions exist that can be answered
in the same mathematical framework.

a. How long (many steps) before absorption (to any absorbing
states)?

b. If you win $5 every time transient state k is visited, how
much money do you expect to win before the game is over
(absorption)?

2. Preliminaries

a. Let g(j) be a random function that maps each state to some
value.

Let .
wi B [ IPESIE ] (56)

be the expected value of the sum of g(j) over all transient
states prior to absorption. To facilitate later derivation, we
define ¢g(1) = 0 for all absorbing states [ > r.

b. Let g(l) =1 for all transient states [. Then w; is the expected
time until absorption given the chain starts in state .

c. Let g(l) = oy which is 1 for transient state k& and otherwise
0. Then w; is the expected number of visits to state k before
absorption. Later we call this W;..
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d. Let g(1) be the dollar amount you win or lose for each state of

the

chain. Then wj; is the expected amount of your earnings

until absorption of the chain.

3. Derivation

wy;

=5

=F

[T-1

Z;)g(Xn)P(o = 2:| (by definition)
i 9(Xn)|Xo = Z] , (9(Xp)=0forn>T)

(%) S 9(X,)|Co = ]

n=1

=g(i)+ Y E[9(X,)|Xo =] , (expectation of sums)

n=1
oo N-1

=g(i)+ > > g(j)P(X, =j|Xo=1) (definition of expectation)
n=1 5=0
co N-1N-1

:g(i)+2 9(7)P(X,, = j|Xo =14, X1 = )py
n=1 j=0 1=0
oo N-1N-1

=g(i) + Z g(7)P(X,, = j|X1 = )py Markov property
n=1j=0 1=0
N-1 oo N-1

=g(i)+ > pu Y, > 9(j)P(X, = j|Xi =) rearrange sums
=0 n=1 j=0

(57)

Re-index the remaining portion of the Markov chain {X;, X, ...}
to start from 0 to make the next step more obvious. For example,
define Y;_1 = X; for all i = 1,2, ... After that, we back out of the
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sums, reversing the arguments above.
N-1 N-1

=g+ Y S Y 9GPV = jYa = 1)

=0 m=0 j=0

_gi) + Nz_lpu 3 Blo(Y)lva =1

8

=g(i) + Z pak [ Zog(Ym )|Yo = l]

T-1

=g(i)+ Z pzlE[ g(Yo)|Yo = l]

=0

=g(i) + IZ; Pawi (58)

(Matrix solution)

1. Preliminaries. Expected “time” before absorption: We
use w; to denote the expectation of random variables defined
on the time and transient states visited before absorption.

wi= B [z 9(X,)[Xo = ] (59)

Let W, be the expected number of visits to the transient state
k before absorption given that the chain started in state ¢. In
other words, W, is a special case of w; when

g(1) = ou, (60)
We can arrange the W, into an r x r matrix called .

Similarly, let W} be the expected number of visits to the
transient state k through time n (which may or may not pre-
cede absorption), given that the chain started in state 7. In
other words, W is given by an equation similar to that of w;,
namely

R DESE o1

We can arrange the W)y into an r x r matrix called W™.
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Please note that as n — oo, n will eventually be certain to
exceed absorption time 7;. Since we defined g(I) = 0 for all
absorbing states [ > r, then W™ — W as n - co. We will use
this fact later.

. Lemma. W = (I -Q)™! where @ is the submatrix in the
standard Markov chain defined above and W is constructed
from elements W, as described above.

Proof:

One can perform a derivation similar to the one above to
obtain equations for W)y

r—1
Wi =0+ ) pisWii ' (62)

=0
In matrix form, this equation is
W =1+QWn! (63)
where [ is an identity matrix.

Let n — oo. On both sides of this equation, W™, Wn-1t - ¥/,
so we obtain
W=1+QW (64)

which we can solve to find W.

W=1+QW
W-QW=1
IW -QW =1 (multiplication by identity)
(I-Q)W =1 (distributive rule)
IW =(I-Q)'I (definition of inverse)
W=(I-Q)" (multiplication by identity) (65)
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E. Hitting Probabilities.
(System-of-equations solution)
1. Derivation:

Consider what can happen in the first step and what happens to
the target after the first step has been taken. The table is simply

Possible first step (j) Probability = What’s the target from here?

j:l{? Pik P(XTi:k|X0:i,X1:l€):1
j¢k7j=7”,...,N—1 Dij P(XTi=k|X0=i,X1:j)=0
j—l,....,’f‘ pij P(XTi=k|X0=i,X1:j):Ujk

an application of the law of total probability, where we consider

all possible outcomes of the first step. Repeating the above table
in mathematical equations, we have

N-

UikZ P(XTiZk?,Xl =j|X0:i) i=07...,T—1

n=

N-
= Z P(AXVTZ = k|X0 :i,Xl :j)P(Xl :j|X0 = Z)

—

)

3

= ), P(Xr, = kX1 = j)pij
0

n

=
— O

r—1

=pir+ 0+ piUs (66)

=0

The key ingredient is to recognize that P(Xp = k|X; = j) =
P(Xr, = k|Xo = 7) because of the Markov property and time ho-
mogeneity.
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2. Example: Rat in a Maze

0 1 7
‘ food
2 ‘ 3 4
8 5 6
shock

The matrix is

021000000
1 1 1
Fooloooi:
3 3 3
0+ 1201212000
0002001% 10 (67)
0003 004%01
00004 3000
0000O0O0O0T1O0
0000O0O0GO0TO 11

We seek equations for U;7, the probability that the mouse will eat
food in compartment 7 before being shocked in compartment 8
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given that it starts in compartment .

Uor = %Un + %U27

Uiz = %Um + %U37 + %

U27 = %U(w + %U37 + % x 0

Usy = 1Us7 + tUsy + 1Us7 + 21Uz

Usr = % + §U37 + %U()‘?

U57 = %U37 + %U67 + % x 0

Us7 = %U47 + %Usﬂ

U77 :1

Us; =0 (68)

3. Example: Return to 0 in a random walk.

We are interested in determining the probability that the drunkard
will ever return to 0 given that he starts there when p > % While
there are no absorbing states in this chain, we can introduce one in
order to answer the question. Let 0 become an absorbing state as
soon as the drunkard takes his first step. Then, we are interested
in the hitting probability of state 0.

Consider the first step. He moves to 1 or -1. First we deal with
-1, by showing that he must return to 0 from -1.

Define the random variable

Y, - {1 with probability p (69)

-1 with probability 1 -p

which has mean E[Y,]=2p-1. When p> %, then E[Y,] > 0. The
Strong Law of Large Numbers implies

i1 Y
Zl_—l -2p-1>0

n
Thus, X, = ¥, Y; > 0, which implies if X; = -1, the chain must
eventually return through 0 to the positive numbers.
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Now assume the first move was to 1. What is the probability of
return to 0. Well, condition on all possible second steps gives

Uro = pUsg + (1 = p)Uno = pUsy +1-p (70)

which is a quadratic equation with roots

1-
U10 =1 or U10 = —p (71)
p
Thus, the unconditional probability of hitting 0 is
1-p
P— +1-p=2(1-p) (72)

Similarly, when p < %, we have U}, = 2p and in general
Ugo = 2min (p, 1 -p) (73)

(Matrix solution)
1. Lemma: U=WR

Proof:

, R R 2 R+QR
P :(%2 I)X(Cb2 1):(% [Q ) (74)

and, in general,

pr - (% e ?"+QM)R) (75)

Now we consider n — oo.

The following paragraph is a rough argument for complete-
ness, but not necessary for the proof. The matrix Q" consists
of n-step transition probabilities pi; where ¢ and j are tran-
sient states. The chain will ultimately absorb into one of the
absorbing states, so as n gets large, the probability of transi-
tioning to a transient state after n steps goes to 0 and Q" — 0.

It is the upper right quadrant that interests us most. There
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we find a matrix series. Suppose there is a matrix V" which
equals the nth series, i.e.,

Vri=1+Q+ Q%+ +Q" (76)

Then we have
V= 14Q+Q%++Q" = [+Q(1+Q+Q*+--+Q" ' = [+QV™!
(77)
This equation looks familiar. In fact, we argued that W™
satisfies such an equation, and therefore we conclude that

Vn = W™ and in the limit, the upper right quadrant goes
to WR.

All together

0 I

After absorption time T, the chain is in an absorbing state
and there is no further change in the state, thus

Ui = P(Xr = KXo = i) = P(Xoo = k| Xo = i) = P = (WR)a,

poo - (o WR) 78)

(79)
Thus,
U=WR (80)
11 Limiting Distribution
Consider the Markov matrix
0.7 0.3
P= (0.4 0.6) (81)
and examine the powers of the Markov matrix
P2 0.61 0.39
0.52 0.48
P 0.5749 0.4281
0.5668 0.4332
s _ 0.572 0.428
0.570 0.430
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One should observe that the matrix rows become more and more similar.

For example, both p(()(g)) and pgg) are very similar. As time progresses (here,

by the 00 10 time we have taken 8 time steps), the probability of moving into
state 0 is virtually independent of the starting state (here, either 0 or 1).

Indeed, it turns out that under certain conditions the n-step transition prob-
abilities

p?j - T (82)
approach a number, we’ll call 7}, that is independent of the starting state i.

Another way to say this is that for n sufficiently large, the probabilistic
behavior of the chain becomes independent of the starting state, i.e.,

P(X,, = j|Xo =) = P(X, = j) (83)

A. 1. Theorem: For irreducible, ergodic Markov chain, the limit lim,,_,; s, pi
exists and is independent of 7. Let

;= lim pj; (84)

n—nifty K

for all j > 0. In addition, the 7; are the unique, nonnegative
solution of

Wj:Zﬂ-ipij s Zﬂ'jzl (85)
i=0 =0
Proof is given in Karlin and Taylor’s A First Course in Stochastic
Processes.
2. Matrix equation for 7 = (7, 71, 7o, ....) is T = P.
3. Pseudo-proof:

Suppose that the limit mentioned in the above theorem exists for
all 7. By the law of total probability, we have

P(Xpi1=7) = iP(XnH = j|1 X5 =) P(X,, = 4)

~
[e=]

M

= pz]P(Xn = Z)

i
=}
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Let n — oo on both sides. If one can bring the limit inside the sum,
then

Ty = ZW iDij
i=0
which is the equation claimed in the theorem.
B. Stationary Distribution.

1. Definition: stationary distribution
If there exist m; that satisfy m; = ¥, pym and ;7 = 1, the

7; is called a stationary distribution. However, be clear that if
limy, oo Py # 7j, then it is not a limiting distribution. Some points:

a. The limiting distribution does not exist for periodic chains.
b. A limiting distribution is a stationary distribution.

c. Neither the limiting distribution nor the stationary distribu-
tion need exist for irreducible, null recurrent chains.

2. Fundamental result.

Lemma: If the irreducible, positive recurrent chain is started
with initial state distribution equal to the stationary distribution,
then P(X,, =j) =, for all future times n.

Proof: (by induction)

Show true for n = 1.

Pz =7) =) piym =, (by limiting distribution equation).
Assume it is true for n -1, so P(X,-1 =j) =7},

Show true for n.

P(X, =) = 3, P(Xy = j|Xno1 = ) P(Xp1 = )
= Z pijm , (by induction hypothesis).

= (by limiting distribution equation).  (86)
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C. Long-Run Proportion.

Claim: 7; is the long-run proportion of time the process spends in
state j.

Proof (for aperiodic chains):

Recall that if a sequence of numbers ag, a1, as,.... converges to a, then
the sequence of partial averages

1 m-—
-— Z::
also converges to a.
Consider the partial sums
1 m—1
— > Py
M k=0

In the limit, as m — oo, these partial sums converge to ;. But recall

3
I

= E[1{X}) = j}Xo =1]

m—1

=E| Y H{Xk=j}Xo=1
k=0

= FE[# time steps spent in state j|

Here, we have used 1{X}, = j} is the indicator function that is 1 when
Xy = 7 and 0 otherwise. Therefore, the partial sums created above
converge to the proportion of time the chain spends in state j.

D. Examples.
1. Weather.

Recall the simple Markov chain for weather (R = rainy, S = sunny)
with transition matrix

S

R
P= R a l-a (87)
S g 1-p
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To find the limiting distribution, we must solve the following equa-
tions

TR = TRPRR + TSPSR = QTR + BTg
Ts = TrPRS + TsPss = (1 —a)mr+ (1 - B)7g (88)

with solution

15} 1-«

“Tiica ™ Tip-a (59

TR

. Two-Day Weather Model.

0=(R,R) 1=(R,S) 2=(S,R) 3=(S,5)

0=(R,R) a -« 0 0
P= 1=(R,S) 0 0 3 1-8
2=(S,R) a 1-a 0 0
3=(S,5) 0 0 3 1-8
(90)

To find the limiting distribution, we must solve the following equa-
tions

T + TTox = T
mo(l-a)+m(l-a)=m
TP+ 0 = m

m(l-a)+m3(1-0)=m;3 (91)

The solutions that satisfy these limiting distribution equations are

= If)ﬁ(:zﬂ) (92)

Therefore, this is the limiting distribution for this Markov chain.
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What is the long-run probability of rain?

aﬁ+(1—a)ﬂ:7rR

1+06 -« (93)

Tg + Ty =

. Genetics.

Consider a population of diploid organisms (like you and me; ev-
eryone carries two copies of every gene) and a particular gene for
which there are two possible variants A and a. Each person in
the population has one of the pair of genes (genotypes) in the
following table. Suppose the proportions of these gene pairs in
the population at generation n are given below. Because no other

Genotype Proportion

AA Pn
Aa qn
aa T

combinations are possible, we know p,, +¢,+7r, = 1. A fundamental
result from genetics is the Hardy- Weinberg Equilibrium. It says
that when

a. mates are selected at random,

b. each parent randomly transmits one of its genes to each o?spring,
and

c. there is no selection,

then the genotype frequencies remain constant from generation to
generation, so that

Pn+1 =Pn =P
Qn+1 = Q4n = (¢
Tpsl =Tp =T (94)

for all n > 0.

Under Hardy-Weinberg Equilibrium, the following identities are

true ) )
p:(p+g) ) 7’=(r+g) (95)
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To prove these equations, note that the probability of generating
genotype AA in the next generation is just the probability of in-
dependently selecting two A genes. The probability of selecting
an A gene is

P(A) = P(pass on Alparent is AA)P(parent is AA)
P(pass on Alparent is Aa)P(parent is Aa)

1
=1xpxoxq (96)

Therefore, the probability of AA in next generation is

2
q
+ —
(p 2)
Finally, since the genotype frequencies are not changing across

generations, the first equation is proven. The second equation can
be shown in a similar fashion.

Now, construct the following Markov chain. Suppose that the
chain starts with one individual of arbitrary genotype. This parent
gives birth to one o?spring, which in turn gives birth to another
o?spring. The state space consists of the three possible genotypes
AA, Aa,aa of the long chain of offspring resulting from the original
parent. The Markov matrix is given by

AA Aa aa

AA p+d  r+4 0
P= 2 2 97
T H ORI 1) I

aa 0 p+d  r+d

The limiting distribution of this process is m = (p,q,7). To show
this, we need only show that 7 satisfies the two equations from
the theorem.

By definition
ptg+r=1 (98)
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but by the Hardy-Weinberg equilibrium, these equations are true
and the result is proven.

E. Techniques.

1. Determining the rate of transition between classes of states.

a. If you want to calculate the rate of transition from state i to
J in the long-run, you need to calculate

P(Xn =1, Xpo1 = j) = P(Xn+1 = j|Xn = Z‘)P(Xn = Z) = DijT;
(100)
where n is sufficiently long that the long-run behavior of
the chain applies (independence from initial state has been
achieved).
b. Suppose you have a Markov chain with two subsets of states,
those that are Good (subset GG) and those that are Bad (subset
B).

To calculate the rate of transition from Good states to Bad
states, we merely sum over all possible combinations of good
and bad states (the combinations are disjoint).
P(X,€G, Xp1€B)=> > pym (101)
ieG jeB
c. Example 1: Verify that the proposed stationary distribution
for the two- day weather model are the rates of transition,
such that mo = P(X,-1 = R, X,, = R), etc.
d. Example 2: Suppose a manufacturing process changes state
according to a Markov chain with transition probability ma-

trix L1
i1 30
0 1 11
P=l, 1 31 1 (102)
11411
i1 0 3

36



Suppose further that states 0 and 1 are running states, but
states 2 and 3 are down states. What is the breakdown rate?

We seek the rate at which the system transitions from states
0 or 1 to states 2 or 3

P(Xp1=20X,,1=3|X,=0uXn=1)=P(X,1 € B|X, €G)

(103)
where B = {2,3} and G = {0,1}. First, we need the limiting
distribution that satisfies the equations

1 1 1 _
Z?TO + Zﬂ'l + §7T2 =T

l7'{'1 +%7T2+Al171'3 =T

1
1 1 1 1 _
Z7T0+Z7T1+Z7T2+Z7T3—7T2

1 1 1 _
Z7T0+Z7T1+§7T3—7T3 (104)
and has solution
_ 3 _1 _ 7 _ 13
To=16 » M1 =7, T2=3; , M3=755 (105)

The breakdown rate is

P(Xn+1 € B|Xn € G) = ToPo2 + MoPo3 + T1P12 + T1Po3

3(1 ) 1(1 1)
=—|=+0)+-(=+-
16 \2 4\2 4
9

- = (106)

2. Average cost/earning per unit time.

Suppose there is a cost or a reward associated with each state
in the Markov chain. We might be interested in computing the
average earnings or cost of the chain over the long-run. We do so
by computing the average long-term cost/value per time step.

a. Proposition: Let {X,,,n >0} be an irreducible Markov chain
with stationary distribution 7;, 7 > 0 and let () be a bounded
function on the state space. With probability 1

lim Znzo"(Xn) _ ir(j)ﬂj (107)

N—-oo N =0
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Proof: Let a;(NN) be the amount of time the Markov chain
spends in state 5 up until time N. Then,

;T(Xn) = iaj(N)r(j) (108)

But, % — 7;, thus the result follows by dividing by N and

letting N — oo.

b. Example: Suppose in the manufacturing example above that
state 0 is highly productive, producing 100 units per day, state
1 is somewhat productive, producing 50 units per day, state 2
is somewhat costly, costing the equivalent of -10 units per day
and state 3 is very costly, costing -20 units per day. What is
the average daily earnings?

In this case,
r(0) =100, r(1) =50, r(2) =-10, r(3) = -20

and the answer is

100x3 50x1 14x(-10) 13x(-20)

+ + =22.92
16 4 48 48

3
r(i)m; =
i=0

12 Basic Limit Theorem of Markov Chains
A. Definition: The first return time of a Markov chain is
R; = r711121{1{Xn =i} (109)
the first time the chain enters state .
B. Let f! be the probability distribution of the first return time, hence
4 = P(Ri=n|X,=1) (110)

For recurrent states, the chain is guaranteed to return to state i: f; =

Yo fii = 1.

For transient states, this is not a probability distribution since ), f? < 1
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C. The mean duration between visits to recurrent state ¢ is given by

n=1

D. Definition: State i is said to be positive recurrent if m; < oo. Oth-
erwise, it is null recurrent. The distinction is only possible for infinite
state Markov chains. All recurrent states in a finite state Markov chain
are positive recurrent.

E. Theorem: Consider a recurrent, irreducible, aperiodic Markov chain.

Then,

1 1
lim pj = < = — (112)
n—oo anon ZZ m’i

and lim,, o pf; = lim,, .o pj; for all states j.

Justification: The MC returns to state ¢ on average every m; steps.
Therefore, it spends, on average, one in every m,; time steps in state 7.
The long-run proportion of time spent in ¢ is

1
= — 113
- (113)
Of course, limy,,co p; = limy, o0 pj; = m; for irreducible, ergodic Markov
chains. This “justification” fails to show that the above result also
applies to null recurrent, irreducible, aperiodic Markov chains (i.e., not
quite ergodic Markov chains).

F. Lemma: The theorem applies to any aperiodic, recurrent class C'.

Proof: Because C' is recurrent, it is not possible to leave class C' once
in one of its states. Therefore, the submatrix of P referring to this
class is the transition probability matrix of an irreducible, aperiodic,
recurrent MC and the theorem applies to the class.

G. Lemma: The equivalent result for a periodic chain with period d is

lim pid = 4 (114)
m

n—o0o .
(2
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and

lim ~ nf : ! (115)
1im — R ﬂ-l = —_—
n—oo 1 = p“ m;

1 1
lim — > pl, =m =— for all states k # (116)
n=een i3 m;

H. Finding Patterns in Markov-Chain Generated Data

1. General Solution.

Consider a Markov chain {X,,,n > 0} with transition probabilities
pij- Suppose Xo = r. What is the expected time until pattern
19,11, ..., 1) Observed in the Markov chain realization?

Let
N(iy,.ooyig) =min{n >k : Xy, g1 =01, 00, Xy = g} (117)

Note that if r = 7;, we cannot count r as part of the matching
pattern. Given this definition, we seek

E[N(ilv"'uik”XO:r] (118>
Define a k-chain from the original Markov chain {X,,n > 0}.
Zy = (Xn*k‘i’l? ank+27 ----- ) Xn) (119>

and let m(J1, ..., jx) be the stationary probabilities of this k-chain.
We know

T(J1s s Jk) = T PjrgaPiads” Pir-rin (120)
by our work with long-run unconditional probabilities. Our new

results indicate 1

7T(i1, ceey Zk)
We need to consider whether or not there is an overlap in the pat-
tern.

(121)

My igeiy, =

Definition: Pattern iy, ..., i has overlap of size j < kif (45_j+1,%k—js2, --s i) =
(’él, ,Z]) for j <k.
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Case 1: no overlap.

E[Zn = (z’l, ...,ik)|Zo = (il, ,zk)] = E[N(il, ...,z’k)|X0 = zk]
1
RN (122)
but
E[N (i1, ....i)| Xo = ix] = Wii, + E[A(41)] (123)

where A(i7) is the number of steps required to match the pattern
given that ¢; has currently been matched and the W, are the
expected wait times until absorption into state i; from iy, in this
case it is the expected time until state ¢; is first hit given the

chain starts in i;. The above equation, gives us an expression for
E[A(i1)], which we utilize in

E[N(i1,...,ix)|Xo =7r] = Wy, + E[A(i1)]

ki1

1
= Wiy + ————— =W,

i) (124)

ki1
Case 2: overlap. Let the largest overlap have length s. Suppose
we have just matched the pattern. Then we are s steps into a
potential new match. We have,

_

W(il,...,ik)

= B[A(i1, ..y is)]
(125)

E[N(Zb "'7'L.k:)|X—s+1 = /é17X—S+2 = i?a "";XO = ZS] =

In addition, because N (i1,...,7x) = N(i1,...,75) + A(i1,...,15), we

have

E[N(Zla 77fk)’X0 = 71] = E[N(Zla "'77;S)|X0 = r]+E[A(i17 "'7is)‘XU = T']
(126)

but

E[A(’Ll, ...,7:5)|X0 = 7’] = E[A(Zly als)]
1
RN 120

One then repeats the whole procedure for pattern 41, ...,75 until a
pattern with no overlaps is found and procedure 1 can be applied.
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2. Example: pattern matching.

What is the expected time before the pattern 1,2,3,1,2,3,1,2 is
achieved given Xy =r? The maximum overlap is of length s = 5.

E[N(1,2,3,1,2,3,1,2)[Xo = r] = E[N(1,2,3,1,2)| X = 7]
. 1
7(1,2,3,1,2,3,1,2)
E[N(1,2,3,1,2)|Xo =r] = E[N(1,2)|Xo = 1]

1
T (1,2.3,1,2)
1
E[N(1,2)[Xo=7] =W+ —— - Wa  (128)

Working our way back up the equalities and substituting in ex-
pressions for 7(-) we have

1
E[N(1,2)|Xo=7]=W, + - Woy
T1P12
1 1
+ + (129)

2 3.2 2
T1P12D23P31  T1P12P23P31
3. Special case: iid random variables.

If the Markov chain is generated by iid random variables, then the
transition probabilities are

pij:P(Xn=j|Xn—1 =1i) = P(X, =7) =pj (130)
i.e., all rows of the transition probability matrix are identical.

In this case, the time between visits to a state ¢ is a geometric
random variable with mean W = +. In this special case, the

expected time to the above pattern is

1 1 1
E[N(1,2,3,1,2,3,1,2)|X0 ZT] = t 55—t 333 (131)
PiP2  DP1P3P3  DP1DPaP3
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13 Reversed and Time-Reversible Markov Chains

A. A chain whose initial state distribution is equal to its stationary distri-
bution or a chain that has run an infinite amount of time is said to be
a “stationary Markov chain.” It is said to have reached “stationarity.”

B. Note, a time inhomogeneous Markov chain cannot reach stationarity.
Only time homogeneous chains can run at stationarity.

C. The reversed Markov chain.

1. Definition: Assume we have a stationary, ergodic Markov chain
with transition probability matrix P and stationary distribution
;. Consider the chain in reverse, for example X,,,.1, X;n, Xm-1, Xm-2, ...
This is called the reversed chain.

2. Claim: The reversed chain is also a Markov chain.

Proof: The result is trivially realized. Consider a portion of the
forward Markov chain

ceey Xm—27 Xm—la Xm7 Xm+17 Xm+27 Xm+37

and suppose that X,,,1 is the present state. Then, by the Markov
property for the forward chain, the future X,, o, X,.:3, ... is inde-
pendent of the past ..., X,,_1, X,,. But independence is a symmet-
ric property, i.e., if X is independent of Y, then Y is independent
of X, therefore the past ..., X,,_1, X,, is independent of the future
Xns2, Xones, ... In terms of the reversed chain, we then have that
the past is independent of the future:

P(Xo, = j|Xma1 =0, Xinao, ...) = P(Xon = j| X1 =0) =q;;  (132)
3. Transition probabilities of the reversed Markov chain.
qij = P(Xm = j|Xm+1 = Z)
_ P(Xpm =7 X1 =1)
P(Xm+1 = Z)
_ MiPji

T

(133)

where we have used the fact that the forward chain is running at
stationarity.
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D. Time-Reversible Markov Chain

1.

Definition: time reversible Markov chain.

An ergodic Markov chain is time reversible if ¢;; = p;; for all states
¢t and j.

. Lemma: A Markov chain is time reversible if

TiPig = TiPji (134>
for all states ¢ and j. Proof is obvious.

Corollary: If a Markov chain is time-reversible, then the propor-
tion of transitions ¢ - 7 is equal to the proportion of j — i.

Proof: To see this, note that the time reversibility condition
given in the lemma is P(X, =14, X,;1 = j) = P(X,, = 5, Xp11 = 1)
for any n sufficiently large that stationarity applies, but P(X,, =
i, X,41 = j) is the proportion of transitions that move ¢ - j and
P(X, = j, X, =1) is for transitions j - i. Thus, the result is
proved.

. Lemma: If we can find m; with ;% m; = 1 and m;p;; = m;p;; for all

states 7, j, then the process is reversible and 7; is the stationary
distribution of the chain.

Proof: Suppose we have z; such that }.;°,z; = 1. Then,
D TiPij = ) TiPji = T ) Pji = & (135)
i=0 i=0 i=0

So, we have shown that the z; satisfy the equations defining a
stationary distribution and we are done.

Example: Consider a random walk on the finite set 0,1,2, ..., M.
A random walk on the integers (or a subset of integers, as in
this case) moves either one step left or one step right during each
timestep. The transition probabilities are

Diiv1 =0 =1 =p;iq
Do =Qp = 1 — Po,o (136>

Py = o = 1= par -
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We argue that the random walk is a reversible process. Consider
a process that jumps right from position 0 < i < M, then if it is
to jump right from 7 once again, it had to have jumped left from
© + 1 since there is only one way back to state ¢ and that is via
t + 1. Therefore, for each jump right at ¢, there must have been
a jump left from i+ 1. So, the fluxes (rates) left and right across
the i <> i+ 1 boundary are equal. (Note, this argument is not fully
rigorous.)

Since the process is time-reversible, we can obtain the stationary
distribution from the reversibility conditions

oy = 7T1(1 - 041)
T = 7T2(1 - ag)

0 = 7Tz‘+1(1 - Oéi+1)

7TM_104M_1=7TM(1—CYM) (137)
with solution
QT
=
1- (&5}
- d1domo (138)

T (- (l-ay)

Then use the condition ¥, 7; = 1 to find that

-1
M
aj*l. ..ao

mo= |1+
’ j=1 (1-aj)(1-a)

(139)

. Theorem: An ergodic MC with p;; = 0 whenever pj;; = 0 is time
reversible if and only if any path from state ¢ to state ¢ has the
same probability as the reverse path. In other words,

Piiy Pivio"Pigi = Piig Pigig_1" "Pivi (140)
for all states i,11,....,7, and integers k.
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Proof: Assume reversibility, then

TiPij = T5Dji
TEPkj = TPjk (141>

TiPik = TkPki
Using the first two equations we obtain an expression for

T _ PjiPkj

142
Tk pjkPij ( )

Another expression for this ratio is obtained from the third equa-
tion

Ti _ Pki
— = 143
P (143)
Equating these two expressions for the ratio, we obtain
PijPikPrj = DikPrjpji (144)

implying that the path i - j - k& — ¢ has the same probability as
the reverse path ¢ - k - 57 — 7. The argument given here can be
extended to arbitrary paths between arbitrary states.

To show the converse, we assume that
Diiy PiviaPirjPji = DijPjix Pigiy " Piri (145)
then sum over all possible intermediate states in the path

> D DiisPigPii = Y. DiiPjiDiin . Piri (146)

14,0250k 14,0250, 0k
k+1 k+1
p§j+ )pji = piijZ‘ ) (147)
Now, let & — oo, then the (k + 1)-step transition probabilities
converge to the limiting distribution and we obtain

ijji = Wipij (148)

which shows time reversibility.
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14 Markov Chain Monte Carlo

Let X be a discrete random vector with values z;,j > 1 and pmf(probability
mass function) P(X = z;). Suppose we want to estimate § = E[h(X)] =

Yo h(x) P(X = ;).

If h(x) is difficult to compute, the potentially infinite sum on the right can
be hard to compute, even approximately, by slowly iterating over all possible

A. Monte Carlo Simulation: In Monte Carlo simulation, an estimate
of 6 is obtained by generating Xi, X, ..., X, as independent and iden-
tically distributed random variables from pmf P(X =x;). The Strong
Law of Large Numbers shows us that

lim Z h(xl = (149)

n—00 <

So we as we generate X, Xo, ..., compute h(X7),h(X3),... and average
the resulting numbers, that value will be a better and better approxi-
mation of # as n grows large.

B. The Need for Markov Chain Monte Carlo: Suppose it is difficult
to generate iid X; or that the pmf is not known and only b; are known

such that

P(X = l’j) = ij (150)
where C' is an unknown constant, i.e., you know the “pmf up to a
constant”

To solve this problem we will generate the realization of a Markov chain
X1, Xo, ..., X,, where the X; are no longer iid, but come instead from a
Markov chain. A previous result we have shown indicates that

tim 325 - ), (151)

so if m; = P(X = x;), then the same average we computed in Monte
Carlo simulation will still be an estimate of 6. In other words, if we
could construct a Markov chain with stationary distribution 7; = P(X =
x;) and we generated a realization X, X, ... of that Markov chain,

47



evaluated h(-) at each state of the chain h(X;), h(X32), ... and computed
the average of these numbers, it will provide an estimate of 6.

. Metropolis-Hastings Algorithm - A Special Implementation
of MCMC Assume } ;. bj < oo, then the following is a procedure for
generating a Markov Chain on the sample space of X with transition
probability matrix (tpm) P = (p;;) matching the criteria above. The
Markov chain must be recurrent and irreducible so that the stationary
distribution exists and that stationary distribution should satisfy 7; =
P(X =x;) so that the above estimation procedure works.

Let ) be any transition probability matrix of any irreducible Markov
chain on the state space of X. It has transition probabilities g;;.

Suppose the current state of the P MC is X,, =i. Then, the algorithm
proceeds as follows:

1. Generate a random variable Y = j with probability ¢;; according
to the @ MC.

2. Set the next state in the P MC to

) with probability o,
Xy = {7 it probabiis a5
¢ with probability 1 - a;
where
) Tl
ij = 1 153
Q5 = 1111 { ey } ( )
Note, that while we do not actually know 7;, we know b; and we
have ,
ULy (154)
b
Thus, we may compute
. ijji }
Oy = 1IN ,1 (155>
’ { bigij

as a function of parameters that are all known.
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The above procedure induces the Markov chain with transition
probability matrix P and entries

QijQvij J#E
Ppij = . (156)
’ {% + Y hei Gie(l—aug) j=i

that defines how the realization X, Xs, ... is generated.

We need to confirm that this MC with matrix P has the appro-
priate stationary distribution. The chain will be time-reversible
with stationary distribution 7; if 37, 7; = 1 (this is given since the
7; are a pmt) and

TiPij = T;DPji (157)
for all ¢ # j. But, according to the definitions of the transition
probabilities this condition is

Tiqij iy = TG0 (158>
Suppose T
i9ji
Ny = ——
Y Tiqij
Then,
. ﬂ'q.
Qji = mm{ﬂz’qzlj‘ , 1} =1
i4ji
Therefore, in this case,
WiQij# = Tidji = Tjq5i i (159)
iYij

4954
TiGij
It is straightforward to show the condition when «a;; = 1 also.

since aj; = 1. Thus, we have shown the condition when «;; =

At this point, we have shown that the constructed Markov chain
has the desired stationary distribution ;. Thus, random vari-
ables X1, Xo, ..., X, generated according to this Markov chain will
provide an estimate of # via the Monte Carlo estimation formula.
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D. Example:

Let £ be the set of all permutations x; = (y1,¥2, ..., yn) of the integers
(1,2,...,n) such that ¥, jy; > a. We will use MCMC to generate X € £
with pmt P(X = ;) uniform over all permutations in £. Because the
target pmf is uniform, we have that 7, = \fll for all s € £, where |L] is
the number of elements in the set L.

We first need to define an irreducible MC with tpm ). We can do this
any way we would like. Define the neighborhood N(s) of an element s €
L as all those permutations which can be obtained from s by swapping
to numbers. For example (1,2,4,3,5) is a neighbor of (1,2,3,4,5), but
(1,3,4,2,5) is not. Define the transition probabilities as

1

qst = m (160)

where |N(s)| is the number of permutations in the neighborhood of
s. Therefore, the proposed permutation is equally likely to be any
of the neighboring permutations. According the Metropolis-Hastings
procedure, we define the acceptance probabilities as

(N
Qp = {IN(t)I : 1} (161)

where the 7, and the m; cancel because they are equal. Note, with this,
we are done constructing the transition probabilities p;.

What might be the advantage to developing such a procedure? It
may be very difficult to sample random permutations that meet the
criteria 3, jy; > a, since very few of the n! permutations may satisfy
that criteria. The above procedure explores the permutation space in
a methodical way and insures, in the long run, that each permutation
in £ is sampled with probability ﬁ

Suppose, for example, that you are interested in computing E[¥"_; jy;]
for x; = (y1,...,yn) € L, that is the average value of Y7, jy; given that
2721 Jy; > a. You sample Xy, Xy, ..., X, from the above Markov chain
as follows
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. Start in any state X, = z; in £ (any convenient one you can find).
. Suppose the current state is X,, = z;.

. Compute a list of permutations in the neighborhood N(z;) and
generate a random number, let’s say k, from the set {0, ..., [N (z;)|}
to propose a new state from the () chain. Suppose the kth member
of N(xg) is ;.

. Compute ag,,. Generate a random variable U ~ Unif(0,1). If
U < s, then set X,,y1 = 2y, otherwise set X1 = ;.

. Repeat N times to generate Xy, X1, ...., X, where NV is big enough
to insure the estimate converges.

. Compute h(Xp),h(X1),...,A(Xy) and compute the estimate

~ 1 XN
0 = N;h(Xn) (162)
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