
Stochastic Calculus Notes

John R. Boccio

October 26, 2012





Contents

1 Lecture 1 1
1.1 Basic terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Do an “experiment” or “trial”, get an “outcome”, ω. . . 1
1.1.2 The probability of a specific outcome is P (ω). . . . . . . . 1
1.1.3 “Event”: a set of outcomes, a subset of Ω. . . . . . . . . 2
1.1.4 Example: Toss a coin 4 times. . . . . . . . . . . . . . . . 2
1.1.5 Set operations: . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.6 Basic facts: . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.7 Conditional probability: . . . . . . . . . . . . . . . . . . 2
1.1.8 Independence: . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.9 Working with conditional probability: . . . . . . . . . . . 3
1.1.10 Algebra of sets and incomplete information: . . . . . . . . 4
1.1.11 Example: . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.12 Another example: . . . . . . . . . . . . . . . . . . . . . . 5
1.1.13 Terminology: . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.14 Informal event terminology: . . . . . . . . . . . . . . . . 5
1.1.15 Measurable: . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.16 Generating an algebra of sets: . . . . . . . . . . . . . . . 6
1.1.17 Generating by a function: . . . . . . . . . . . . . . . . . 6
1.1.18 Expected value: . . . . . . . . . . . . . . . . . . . . . . . 7
1.1.19 Best approximation property: . . . . . . . . . . . . . . . . 7
1.1.20 Conditional expectation, elementary version: . . . . . . . 7
1.1.21 Conditional expectation, modern version: . . . . . . . . . 8
1.1.22 Best approximation property: . . . . . . . . . . . . . . . . 9

1.2 Markov Chains, I . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.1 Time: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.2 State space: . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.3 Path space: . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.4 Transition probabilities: . . . . . . . . . . . . . . . . . . 10
1.2.5 Transition matrix: . . . . . . . . . . . . . . . . . . . . . . 10
1.2.6 Path probabilities: . . . . . . . . . . . . . . . . . . . . . . 11
1.2.7 Example 3, coin flips: . . . . . . . . . . . . . . . . . . . . 11
1.2.8 Example 4, hidden Markov model: . . . . . . . . . . . . . 12
1.2.9 Example 5, incomplete state information: . . . . . . . . . 12

i



ii CONTENTS

2 Lecture 2 15
2.1 Simple Random Walk . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 Definition: . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.2 Quantities of interest: . . . . . . . . . . . . . . . . . . . . 15
2.1.3 Ft: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.4 Conditioning on Ft: . . . . . . . . . . . . . . . . . . . . . 16
2.1.5 Backwards equations: . . . . . . . . . . . . . . . . . . . . 16
2.1.6 Expected payouts: . . . . . . . . . . . . . . . . . . . . . . 17

3 Lecture 3 19
3.1 Recurrence relations for Markov Chains . . . . . . . . . . . . . . 19

3.1.1 Recapitulation and notation: . . . . . . . . . . . . . . . . 19
3.1.2 The “law of total probability”: . . . . . . . . . . . . . . . 20
3.1.3 Backward equation, classical version: . . . . . . . . . . . . 20
3.1.4 Backward equation, matrix version: . . . . . . . . . . . . 21
3.1.5 Forward equation, classical version: . . . . . . . . . . . . . 21
3.1.6 Initial data and path probabilities: . . . . . . . . . . . . 21
3.1.7 Forward equation, matrix version: . . . . . . . . . . . . . 22
3.1.8 Expectation value: . . . . . . . . . . . . . . . . . . . . . . 22
3.1.9 Relationship between the forward and backward equations: 22
3.1.10 Duality: . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1.11 Duality, adjoint, and transpose: . . . . . . . . . . . . . . . 23

3.2 Martingales and stopping times . . . . . . . . . . . . . . . . . . . 24
3.2.1 Stochstic process: . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.2 Example 1, Markov chains: . . . . . . . . . . . . . . . . . 24
3.2.3 Example 2, diadic sets: . . . . . . . . . . . . . . . . . . . . 24
3.2.4 Martingales: . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.5 A lemma on conditional expectation: . . . . . . . . . . . . 25
3.2.6 More martingales: . . . . . . . . . . . . . . . . . . . . . . 26
3.2.7 Weak and strong efficient markets: . . . . . . . . . . . . . 26
3.2.8 Doob’s principle: . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.9 Example, conditional expectations: . . . . . . . . . . . . . 26
3.2.10 Example 2, continued: . . . . . . . . . . . . . . . . . . . 27
3.2.11 Doob’s principle continued: . . . . . . . . . . . . . . . . . 27
3.2.12 Investing with Doob: . . . . . . . . . . . . . . . . . . . . . 27
3.2.13 Stopping times: . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.14 Doob’s stopping time theorem for one stopping time: . . . 28
3.2.15 Stopping time paradox: . . . . . . . . . . . . . . . . . . . 28
3.2.16 More stopping times theorem: . . . . . . . . . . . . . . . . 29

4 Lecture 4 31
4.1 Continuous probability . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1.1 Continuous spaces . . . . . . . . . . . . . . . . . . . . . . 31
4.1.2 Probability measures: . . . . . . . . . . . . . . . . . . . . 32
4.1.3 Rn: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.1.4 Integration with respect to a measure: . . . . . . . . . . . 33



CONTENTS iii

4.1.5 Markov chains with T =∞: . . . . . . . . . . . . . . . . . 34
4.1.6 Conditional expectation: . . . . . . . . . . . . . . . . . . . 35
4.1.7 Generating a σ−algebra: . . . . . . . . . . . . . . . . . . . 35
4.1.8 Example in two dimensions: . . . . . . . . . . . . . . . . . 36
4.1.9 Marginal density and total probability: . . . . . . . . . . . 36
4.1.10 Classical conditional expectation: . . . . . . . . . . . . . . 37
4.1.11 Modern conditional expectation: . . . . . . . . . . . . . . 38
4.1.12 Modern conditional probability: . . . . . . . . . . . . . . . 39
4.1.13 Semimodern conditional probability: . . . . . . . . . . . . 39

4.2 Gaussian Random Variables . . . . . . . . . . . . . . . . . . . . . 40
4.2.1 Gaussian random variables, scalar: . . . . . . . . . . . . . 40
4.2.2 Multivariate normal random variables: . . . . . . . . . . . 40
4.2.3 Diagonalizing H: . . . . . . . . . . . . . . . . . . . . . . . 41
4.2.4 Calculations using the multivariate normal density: . . . . 41
4.2.5 The covariance, by direct integration: . . . . . . . . . . . 42
4.2.6 Linear functions of multivariate normals: . . . . . . . . . 44
4.2.7 Uncorrelation and independence: . . . . . . . . . . . . . . 44
4.2.8 Application, generating correlated normals: . . . . . . . . 44
4.2.9 Central Limit Theorem: . . . . . . . . . . . . . . . . . . . 45
4.2.10 What the CLT says about Gaussians: . . . . . . . . . . . 45

5 Lecture 5 47
5.1 Brownian Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.1.1 Path space: . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.1.2 Increment probabilities: . . . . . . . . . . . . . . . . . . . 48
5.1.3 Consistency: . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.1.4 Rough paths, total variation: . . . . . . . . . . . . . . . . 49
5.1.5 Dynamic trading: . . . . . . . . . . . . . . . . . . . . . . . 50
5.1.6 Quadratic variation: . . . . . . . . . . . . . . . . . . . . . 50
5.1.7 Trading volatility: . . . . . . . . . . . . . . . . . . . . . . 51
5.1.8 Almost sure convergence: . . . . . . . . . . . . . . . . . . 51
5.1.9 Markov property: . . . . . . . . . . . . . . . . . . . . . . . 51
5.1.10 Conditional probabilities for intermediate times: . . . . . 52
5.1.11 Brownian bridge construction: . . . . . . . . . . . . . . . 52
5.1.12 Continuous time stochastic process: . . . . . . . . . . . . 52
5.1.13 Continuous time martingales: . . . . . . . . . . . . . . . . 52

5.2 Brownian motion and the heat equation . . . . . . . . . . . . . . 52
5.2.1 Forward equation for the probability density: . . . . . . . 52
5.2.2 Heat equation via Taylor series: . . . . . . . . . . . . . . . 53
5.2.3 The initial value problem: . . . . . . . . . . . . . . . . . . 54
5.2.4 Ill posed problems: . . . . . . . . . . . . . . . . . . . . . . 54
5.2.5 Conditional expectations: . . . . . . . . . . . . . . . . . . 55
5.2.6 Backward equation by direct verification: . . . . . . . . . 55
5.2.7 Backward equation by Taylor series: . . . . . . . . . . . . 56
5.2.8 The final value problem: . . . . . . . . . . . . . . . . . . . 56
5.2.9 Duality: . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56



iv CONTENTS

5.2.10 The smoothing property, regularity: . . . . . . . . . . . . 56
5.2.11 Rate of smoothing: . . . . . . . . . . . . . . . . . . . . . . 57
5.2.12 Diffusion: . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.2.13 Heat: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.2.14 Hitting times: . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.2.15 Probabilities for stopped Brownian motion: . . . . . . . . 58
5.2.16 Forward equation for u: . . . . . . . . . . . . . . . . . . . 58
5.2.17 Probability flux: . . . . . . . . . . . . . . . . . . . . . . . 59
5.2.18 Images and Reflections: . . . . . . . . . . . . . . . . . . . 59
5.2.19 The reflection principle: . . . . . . . . . . . . . . . . . . . 60

6 Lecture 6 61
6.1 Integration with respect to Brownian Motion . . . . . . . . . . . 61

6.1.1 Integrals involving a function of t only: . . . . . . . . . . 61
6.1.2 Different kinds of convergence: . . . . . . . . . . . . . . . 62
6.1.3 Proving pointwise convergence: . . . . . . . . . . . . . . . 62
6.1.4 The integral as a function of X: . . . . . . . . . . . . . . . 63
6.1.5 Comparing the ∆t and ∆t/2 approximations: . . . . . . . 64
6.1.6 Unanswered theoretical questions: . . . . . . . . . . . . . 65
6.1.7 White noise: . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.1.8 White noise is not a function: . . . . . . . . . . . . . . . . 65
6.1.9 White noise and Brownian motion: . . . . . . . . . . . . . 66
6.1.10 Correlations of integrals with respect to Brownian motion: 66
6.1.11 δ correlated white noise: . . . . . . . . . . . . . . . . . . . 66

6.2 Ito Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.2.1 Forward dXt: . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.2.2 Example 1: . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.2.3 Other definitions of the stochastic integral give different

answers: . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.2.4 Convergence and existence of the integral (6.11): . . . . . 69
6.2.5 How continuous are Brownian motion paths: . . . . . . . 70
6.2.6 Ito integration with nonanticipating functions: . . . . . . 71
6.2.7 Further extension, the Ito isometry: . . . . . . . . . . . . 72
6.2.8 Martingale property: . . . . . . . . . . . . . . . . . . . . . 73

7 Lecture 7 75
7.1 Ito Stochastic Differential Equations . . . . . . . . . . . . . . . . 75

7.1.1 Notation: . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
7.1.2 The SDE: . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
7.1.3 Existence and uniqueness of Ito solutions: . . . . . . . . . 76
7.1.4 Uniqueness: . . . . . . . . . . . . . . . . . . . . . . . . . . 77
7.1.5 Existence of solutions via Picard iteration: . . . . . . . . . 78
7.1.6 Diffusions as martingales: . . . . . . . . . . . . . . . . . . 78
7.1.7 The structure of correlated gaussians: . . . . . . . . . . . 79

7.2 Ito’s Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
7.2.1 The Fundamental Theorem of calculus: . . . . . . . . . . 80



CONTENTS v

7.2.2 The Ito dVt: . . . . . . . . . . . . . . . . . . . . . . . . . . 81
7.2.3 First version: . . . . . . . . . . . . . . . . . . . . . . . . . 81
7.2.4 Derivation, short time approximations: . . . . . . . . . . . 82
7.2.5 The non Newtonian step: . . . . . . . . . . . . . . . . . . 82
7.2.6 A Technical Detail: . . . . . . . . . . . . . . . . . . . . . . 83
7.2.7 Integration by parts: . . . . . . . . . . . . . . . . . . . . . 83
7.2.8 Doing

∫
WtdWt the easy way: . . . . . . . . . . . . . . . . 84

7.2.9
∫
W 2
t dXt the easy way: . . . . . . . . . . . . . . . . . . . 84

7.2.10 Solving an SDE: . . . . . . . . . . . . . . . . . . . . . . . 85
7.2.11 Differentials of functions of Xt: . . . . . . . . . . . . . . . 85
7.2.12 The “Ito rule” dW 2 = dt: . . . . . . . . . . . . . . . . . . 86
7.2.13 Quadratic variation: . . . . . . . . . . . . . . . . . . . . . 86
7.2.14 Geometric Brownian motion again: . . . . . . . . . . . . . 87
7.2.15 Remarks on the solution: . . . . . . . . . . . . . . . . . . 87

8 Lecture 8 89
8.1 Girsanov’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 89

8.1.1 Probability densities and Lebesgue measure: . . . . . . . . 89
8.1.2 The Radon Nikodym derivative: . . . . . . . . . . . . . . 89
8.1.3 Radon Nikodym derivative as likelihood ratio: . . . . . . . 90
8.1.4 Example of one dimensional gaussians: . . . . . . . . . . . 90
8.1.5 Absolutely continuous measures: . . . . . . . . . . . . . . 90
8.1.6 Examples in finite dimensions: . . . . . . . . . . . . . . . 91
8.1.7 Cantor measure: . . . . . . . . . . . . . . . . . . . . . . . 91
8.1.8 Alternative descriptions of a random variable: . . . . . . . 93
8.1.9 A one dimensional mapping example: . . . . . . . . . . . 93
8.1.10 Distinguishing random variables: . . . . . . . . . . . . . . 93
8.1.11 Absolute continuity of diffusion measures: . . . . . . . . . 94
8.1.12 Likelihood ratio for SDE solutions: . . . . . . . . . . . . . 95
8.1.13 Multiplying conditional probability densities: . . . . . . . 95
8.1.14 Measure for the forward Euler method: . . . . . . . . . . 95





Chapter 1

Lecture 1

1.1 Basic terminology

Here are some basic definitions and ideas of probability. These might seem dry
without examples. Be patient. Examples are coming in later sections. Although
the topic is elementary, the notation is taken from more advanced probability
so some of it might be unfamiliar. The terminology is not always helpful for
simple probability problems, but it is just the thing for describing stochastic
processes and decision problems under incomplete information.

1.1.1 Do an “experiment” or “trial”, get an “outcome”,
ω.

The set of all possible outcomes is Ω. We often call Ω the “probability space”.
The probability is “discrete” if Ω is finite or countable (able to be listed in a
single infinite numbered list). For now, we do only discrete probability.

1.1.2 The probability of a specific outcome is P (ω).

We always assume that P (ω) ≥ 0 for any ω ∈ Ω and that
∑
ω∈Ω P (ω) = 1.

The interpretation of probability is a matter for philosophers, but we might
say that P (ω) is the probability of outcome ω happening, or the fraction of
times event ω would happen in a large number of independent trials. The
philosophical problem is that it may be impossible to actually perform a large
number of independent trials. People also sometimes say that probabilities
represent our often subjective (lack of) knowledge of future events. Probability
1 is something that is certain to happen while probability 0 is for something
that cannot happen.
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1.1.3 “Event”: a set of outcomes, a subset of Ω.

The probability of an event is the sum of the probabilities of the outcomes that
make up the event P (A) =

∑
ω∈A P (ω). We do not distinguish between the

outcome ω and the event that that outcome occurred A = {ω}. That is, we
write P (ω) for P ({ω}) or vice versa. This is called “abuse of notation”: we use
notation in a way that is not absolutely correct but whose meaning is clear. It’s
the mathematical version of saying “I could care less” to mean the opposite.

1.1.4 Example: Toss a coin 4 times.

Each toss yields either H (heads) or T (tails). There are 16 possible outcomes,
TTTT, TTTH, TTHT, TTHH, THTT, . . ., HHHH. The number of outcomes
is #(Ω) = |Ω| = 16. Normally each outcome is equally likely, so P (ω) = 1

16 for
each ω ∈ Ω. If A is the event that the first two tosses are H, then

A = {HHHH, HHHT, HHTH, HHTT} .

There are 4 elements (outcomes) in A, each having probability 1
16 Therefore

P (first two H) = P (A) =
∑
ω∈Ω

P (ω) =
∑
ω∈Ω

1

16
=

4

16
=

1

4

1.1.5 Set operations:

Events are actually sets so set operations apply to events. If A and B are events,
the event “A and B” is the set of outcomes in both A and B. This is the set
intersection A ∩B. The union A ∪B is the set of outcomes in A or in B (or in
both). The complement of A, Ac, is the event “not A”, the set of outcomes not
in A. Events A and B are disjoint if they have no elements in common. The
empty event is the empty set, the set with no elements, ∅. The probability of
∅ should be zero because the sum that defines it has no terms: P (∅) = 0. The
complement of ∅ is Ω. Events A and B are disjoint if A ∪ B = ∅. Event A is
contained in event B, A ⊆ B, if every outcome in A is also in B.

1.1.6 Basic facts:

Each of these facts is a consequence of the representation P (A) =
∑
ω∈A. First

P (ω)P (A) ≤ P (B) if A ⊆ B. Also, P (A) + P (B) = P (A ∪ B) if A and B are
disjoint: A ∪B = ∅. From this it follows that P (A) + P (Ac) = P (Ω) = 1.

1.1.7 Conditional probability:

The probability of outcome A given that B has occured is

P (A | B) =
P (A ∩B)

P (B)
. (1.1)

2



This is the percent of B outcomes that are also A outcomes. The formula is
called “Bayes’ rule”. It is often used to calculate P (A∩B) once we know P (B)
and P (A | B). The formula for that is P (A ∩B) = P (A | B)P (B).

1.1.8 Independence:

Events A and B are independent if P (A | B) = P (A). That is, knowing whether
of not B occured does not change he probability of A. In view of Bayes’ rule,
this is expressed as

P (A ∩B) = P (A) · P (B) . (1.2)

For example, suppose A is the event that two of the four tosses are H and B
is the event that the first toss is H. Then A has 6 elements (outcomes), B has
8, and, as you can check by listing them, A ∩ B has 3 elements. Since each
element has probability 1

16 , this gives P (A ∩ B) = 3
16 while P (A) = 6

16 and
P (B) = 8

16 = 1
2 . We might say “duh” for the last calculation since we started

the example with the hypothesis that H and T were equally likely. Anyway,
this shows that (1.2) is indeed satisfied in this case. This example is supposed
to show that while some pairs of events, such as the first and second tosses, are
“obviously” independent, others are independent as the result of a calculation.
Note that if C is the event that 3 of the 4 tosses are H (instead of 2 for A),
then P (C) = 4

16 = 1
4 and P (B ∩ C) = 3

16 , because

B ∩ C = {HHHT, HHTH, HTHH}

has three elements. Bayes’ rule (1.1) gives P (B | C) = 1
16/

3
4 = 3

4 . Knowing
that there are 3 heads in all raises the probability that the first toss is H from
1
2 to 3

4 .

1.1.9 Working with conditional probability:

Conditional probability is like ordinary (unconditional) probability. Once we
know that the event B occured, the probability of outcome ω is given by Bayes’
rule

P (ω | B) =

{
P (ω)
P (B) forω ∈ B,

0 forω /∈ B.

That is, we shrink the probability space from Ω to B and “renormalize” the
probabilities by dividing by P (B) so that they again sum to one:∑

ω∈B
P (ω | B) = 1 .

We can apply the rules of conditional probability to conditional P (ω | B) prob-
abilities themselves. If P̃ (ω) = P (ω | B), we can condition on another event,
C. What is the probability P̃ of ω given that C occurred? If ω /∈ C it is zero.

3



If ω ∈ C, it is, repeated using Bayes’ rule,

P̃ (ω | C) =
P̃ (ω)

P̃ (C)

=
P (ω | B)

P (C | B)

=
P (ω)

P (B)
P (C ∩B
P (B)

=
P (ω)

P (B ∩ C)

= P (ω | B ∩ C) .

The conclusion is that conditioning on B and then on C is the same as condi-
tioning on B ∩ C (B and C) all at once.

1.1.10 Algebra of sets and incomplete information:

A set of events, F , is an “algebra” if

i: A ∈ F implies that Ac ∈ F .

ii: A ∈ F and B ∈ F implies that A ∪B ∈ F and A ∩B ∈ F .

iii: Ω ∈ F and ∅ ∈ F .

We interpret F as representing a state of partial information. We know whether
any of the events in F occurred but we do not have enough information to
determine whether an event not in F occurred. The above axioms are natural
in light of this interpretation. If we know whether A happened, we surely know
whether “not A” happened. If we know whether A happened and whether B
happened, then we can tell whether “A and B” happened. We definitely know
whether ∅ happened (it did not) and whether Ω happened (it did). Events in
F are called “measurable” or “determined in F”. You will often see the term
σ–algebra, or sigma algebra, instead of just “algebra”. The distinction between
σ–algebra and algebra is technical and only arises when Ω is infinite, and rarely
then.

1.1.11 Example:

Suppose we know only outcomes only of the first two tosses. One event mea-
surable in F is

{HH} = {HHHH, HHHT, HHTH, HHTT} .

This is something of an abuse of notation; get used to it. An example of an
event not determined by this F is the event of no more than one H:

A = {TTTT, TTTH, TTHT, THTT, HTTT} .
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Just knowing the first two tosses does not tell you with certainty whether the
total number of heads is less than two.

1.1.12 Another example:

Suppose we know only the results of the tosses but not the order. This might
happen if we toss 4 identical coins at the same time. In this case, we know only
the number of H coins. Some measurable sets are (with an abuse of notation)

{4} = {HHHH}
{3} = {HHHT, HHTH, HTHH, THHH}

...

{0} = {TTTT}

The event {2} has 6 outcomes (list them), so its probability is 6 · 1
16 = 3

8 . There
are other events measureable in this algebra, such as “less than 3 H”, but, in
some sense, the events listed “generate” the algebra.

1.1.13 Terminology:

What we call “outcome” is sometimes called “random variable”. I don’t use
this because it can be confusing in that we often think of variables as real or
complex numbers. A “real valued function” of the random variable ω is a real
number X for each ω, written X(ω). The most common abuse of notation in
probability is to write X instead of X(ω). We will do this most of the time,
but not just yet. We often think of X as a random number whose value is
determined by the outcome (random variable) ω. A common convention is to
use upper case letters for random numbers and lower case letters for specific
values of that variable. For example, the “cumulative distribution function”
(CDF), F (x) is the probability that X ≤ x, that is F (x) =

∑
X(ω)≤x P (ω).

1.1.14 Informal event terminology:

We often describe events in words. For example, we might write P (X ≤ x)
where, strictly, we might be supposed to say Bx = {ω | X(ω) ≤} then P (X =
leqx) = P (Bx). If there are two functions, X1 and X2, we might try to calculate,
for example, P (X1 = X2), which is actually the probability of the set of ω so
that X1(ω) = X2(ω).

1.1.15 Measurable:

A function (of a random variable)X(ω) is measurable with respect to the algebra
F if the value of X is completely determined by the information in F . To give a
mathematical definition, for any number, x we can consider the event that X =
x, which is Ax = {ω : X(ω) = x}. In discrete probability, Ax will be the empty
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set for almost all x values and be another set only for those values of x actually
taken by X(ω) for one of the outcomes ω. The function X(ω) is “measurable
with respect to F if the sets Ax are all measurable. People often write X ∈ F
(an abuse of notation) to indicate that X is measurable with respect to F . In
the second example above, the function X = number of H minus number of T
is measurable, while the function X = number of T before the first H is not.

1.1.16 Generating an algebra of sets:

Suppose there are events A1, . . ., Ak that you know. The algebra, F , generated
by these sets is the algebra that expresses the information about the outcome
you gain by knowing these events. One definition of F is that an event A is in F
if A can be expressed in terms of the known events Aj using the set operations
intersection, union, and complement a number of times. For example, we could
define an event A by saying “ω is in A1 and (A2 or A3) but not A5 or A5”.
An equivalent to saying that F is the smallest algebra of sets that contains
the known events Aj . Obviously (think about this!) any algebra that contains
the Aj contains any event described by set operations on the Aj , that is the
definition of algebra of sets. Also the sets defined by set operations on the Aj
form an algebra of sets. For example, if A1 is the event that the first toss is
H and A2 is the event that the second toss is H, then A1 and A2 generate the
algebra of events determined by knowing the results of the first two tosses. This
is example 1 above.

1.1.17 Generating by a function:

A function X(ω) defines an algebra of sets generated by the sets Ax. This is
the smallest algebra, F , so that X is measurable with respect to F . Example
2 above has this form. We can think of F as being the algebra of sets defined
by statements about the values of X(ω). For example, one A ∈ F would be the
set of ω with X either between 4 and 5 or greater than 11.

We write FX for the algebra of sets generated by X and ask, what it means
that another function of ω, Y (ω), is measurable with respect to FX . The
information interpretation of FX says that Y ∈ FX if knowing the value of X(ω)
determines the value of Y (ω). This means that if ω1 and ω2 have the same X
value (X(ω1) = X(ω2)) then they also have the same Y value. Said another
way, if Ax is not empty, then there is some number, u(x), so that Y (ω) = u(x)
for every ω ∈ Ax. This means that Y (ω) = u(X(ω)) for all ω ∈ Ω). Altogether,
saying Y ∈ FX is a fancy way of saying that Y is a function of X. Of course,
u(x) only needs to be defined for those values of x actually taken by the random
variable X.

For example, if X is the number of H in 4 tosses, and Y is the number of H
minus the number of T , then, for any 4 tosses, ω, Y (ω) = 2X(ω)− 4. That is,
u(x) = 2x− 4.
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1.1.18 Expected value:

A random variable (actually, a function of a random variable)X(ω) has expected
value

E[X] =
∑
ω∈Ω

X(ω)P (ω) .

(Note that we do not write ω on the left. We think of X as simply a random
number and ω as a story of how X was generated.) This is the “average” value
in the sense that if you could perform the “experiment” of sampling X vary
many times and average the resulting numbers, you would get roughly E[X].
This is because P (ω) is the fraction of the time you would get ω and X(ω) is
the number you get for ω. If X1(ω) and X2(ω) are two random variables, then
E[X1 + X2] = E[X1] + E[X2]. Also, E[cX] = cE[X] if c is a constant (not
random).

1.1.19 Best approximation property:

If we wanted to approximate a random variable, X, (function X(ω) with ω not
written) by a single non random number, x, what value would we pick? That
would depend on the sense of “best”. One such sense is “least squares”, choosing
x to minimize the expected value of (X − x)2. A calculation, which uses the
above properties of expected value, gives

E
[
(X − x)

2
]

= E[X2 − 2Xx+ x2]

= E[X2]− 2xE[X] + x2 .

Minimizing this over x gives the optimal value

xopt = E[X] . (1.3)

1.1.20 Conditional expectation, elementary version:

There are two senses of the term “conditional expectation”. We start with the
original sense then turn to the related but different sense often used in stochastic
processes. Conditional expectation is defined from conditional probability in the
obvious way

E[X|B] =
∑
ω

X(ω)P (ω|B) .

For example, we can caluclate

E[#of H in 4 tosses | at least one H] .

Write B for the event {at least one H}. Since only ω =TTTT does not have at
least one H, |B| = 15 and P (ω | B) = 1

15 for any ω ∈ B. Let X be the number
of H. Unconditionally, E[H] = 2 (see below). This means that

1

16

∑
x∈Ω

X(ω) = 2 .

7



Note that X(ω) = 0 for all ω /∈ B (only TTTT), so that implies that

1

16

∑
ω∈B

X(ω)P (ω) = 2

15

16
· 1

15

∑
ω∈B

X(ω)P (ω) = 2

1

15

∑
ω∈B

X(ω)P (ω) =
2 · 16

15

E[X | B] =
32

15
= 2 + .133 . . . .

Knowing that there was at least on H increases the expected number of H by
.133 . . ..

1.1.21 Conditional expectation, modern version:

The modern conditional expectation starts with an algebra, F , rather than just
a set. It defines a (function of a) random variable, Y (ω) = E[X | F ], that is
measurable with respect to F even though X is not. This function represents
the best prediction of X given the information in F . In the elementary case
(paragraph 1.20), the information is the occurence or non occurence of a single
event, B. In this case, the algebra, FB consists only of the sets B, Bc, ∅, and
Ω. The modern definition gives a function Y (ω) so that

Y (ω) =

{
E[X | B] if ω ∈ B,
E[X | Bc] if ω /∈ B.

Make sure you understand the fact that this two valued function Y is measurable
with respect to FB .

Only slightly more complicated is the case where F is generated by a “partition”
of Ω. A partition is a collection of events B1, . . ., Bn, so that each outcome, ω
is in one and only one of the events. The sets {4}, {3}, . . ., {0} in paragraph
1.12 form a partition, as do the sets Ax in paragraph 1.15 (if you keep only the
Ax that are not empty). The algebra of sets generated by the sets in a partition
consists of unions of sets in the partition (think this through). The conditional
expectation Y (ω) = E[X | F ] is defined to be

Y (ω) = E[X | Bj ] if ω ∈ Bj ,

where E[X | Bj ] is in the elementary sense of paragraph 1.20. This is well
defined because there is exactly one Bj for each ω. A single set B defines a
partition: B1 = B, B2 = Bc, so this agrees with the earlier definition in that
case.

Finally, as long as the probability space, Ω is finite, any algebra of sets is gener-
ated by some partition. The events in the partition are events in F that cannot
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be subdivided within F .

1.1.22 Best approximation property:

Suppose we have a random variable, X(ω), that is not measurable with respect
to the algebra of sets F . That is, the information in F does not completely
determine the values of X. The conditional expectation, Y (ω) = E[X | F ], has
the property that it is the best approximation to X among functions measurable
with respect to Y , in the least squares sense. That is, if Ỹ ∈ F , then

E
[
(Ỹ −X)2

]
≥ E

[
(Y −X)2

]
.

In fact, this later will be the definition of conditional expectation in situations
where the partition definition is not directly applicable. Suppose F is generated
by the partition B1, . . ., Bn. Any random variable Ỹ ∈ F is determined by it’s
(constant) values on the sets Bk: Ỹ (ω) = ỹk for ωk ∈ Bk. Just as in paragraph
1.19, the best value for ỹk is E[X | Bj ].

1.2 Markov Chains, I

Markov1 chains form a simple class of stochastic processes. They seem to rep-
resent a good level of abstraction and generality: many practical models are
Markov chains. Here we discuss Markov chains in “discrete time” (the continu-
ous time version is called a “Markov process) and having a finite “state space”
(see below). We also suppose that the “transition probabilities” are stationary,
i.e. independent of time.

1.2.1 Time:

The time variable, t, will be an integer representing the number of time units
from a starting time. The actual time between t and t+1 could be a nanosecond
(for modeling computer communication networks) or a month (for modeling
bond rating changes), or whatever.

1.2.2 State space:

At time t the system will be in one of a finite list of states. This set of states is
the “state space”, S. To be a Markov chain, the “state” should be a “complete”
description of the actual state of the system at time t. This means that it should
contain any information about the system at time t that helps predict the state

1The Russian mathematician A. A. Markov was active in the last decades of the 19th

century. He is known for his path breaking work on the distribution of prime numbers as well
as on probability.
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at future times t + 1, t + 2, ... . This will be more clear soon. The state at
time t will be called X(t) or Xt. Eventually, there may be an ω also, so that
the state is a function of t and ω: X(t, ω) or Xt(ω). The states may be called
s1, . . ., sm , or simply 1, 2, . . . , m. depending on the context.

1.2.3 Path space:

The sequence of states X1, X2, . . ., XT , is a “path”. The set of paths is “path
space”. This path space is the probability space, Ω, for the Markov chain. An
outcome is completely determined by the sequence fo states in the path. That
is, in the case of a Markov chain, there might not be a distinction between the
path X = (X1, . . . , Xm) and the outcome ω. We will soon have a formula for
the probablity of any path X. An event is a collection of paths such as the set
of all paths that do not contain state s6 or the set of paths that end in XT = s1,
etc. The number of paths of length T is mT , where m = |S| is the number of
states. As a practical matter this (albeit finite) number is often too large for
computation. For example, for 7 states and 10 steps (m = 7, T = 10) we have
|Ω| = 710 = 28, 2475, 294 ≈ 3 · 108. A 1GHz computer would take at least an
hour to list and calculate the probability of each path.

1.2.4 Transition probabilities:

The transition probability, Pjk, is the probability of going from state j to state
k in one step. That is:

Pjk = P (Xt+1 = k | Xt = j) .

The Markov chain is “stationary” if the transition probabilities Pjk are inde-
pendent of t. Each transition probability Pjk is between 0 and 1, with values 0
and 1 allowed, though 0 is more common than one. Also, with j fixed, the Pjk
must sum to 1 (summing over k) because k = 1, 2, . . ., m is a complete list of
the possible states at time t+ 1.

1.2.5 Transition matrix:

These transition probabilities form an m×m matrix, P (an unfortunate conflict
of notation). The (j, k) entry of P being the transition probability Pjk. The sum
of the entries of the transition matrix P in row j is

∑
k Pjk = 1. A matrix with

these properties: no negative entries, all row sums equal to 1, is a “stochastic
matrix”. Any stochastic matrix can be the transition matrix for a Markov chain.
Methods from linear algebra often enter into the analysis of Markov chains. For
example, the time s transition probability

P sjk = P (Xt+s = k | Xt = j)

is the (j, k) entry of P s, the sth power of the transition matrix (explanation
below). The “steady state” probabilities form an eigenvector of P .

10



1.2.6 Path probabilities:

The Markov property allows us to compute the probability of any path or por-
tion of a path by multiplying transition probabilities. For example, suppose
we want the probability of the successive transitions i → j → k. This is
P (Xt+1 = j and Xt+2 = k | Xt = i). Using the conditional Bayes’ rule, this is

P (Xt+2 = k | Xt+1 = j and Xt = i) · P (Xt+1 = j | Xt = i) .

Here the Markov property comes in. It states that if we know Xt+1, the value
of Xt is irrelevant in predicting Xt+2. That is

P (Xt+2 = k | Xt+1 = j and Xt = i) = P (Xt+2 = k | Xt+1 = j) = Pjk .

Combining the above two facts, we get

P (i→ j → k) = P (Xt+1 = j and Xt+2 = k | Xt = i)

= Pij · Pjk .

To give the probability of a whole path, X = (X1, . . . , XT ), we have to give
the “initial distribution” probabilities for X1 and the transition probabilities.
The transition probabilities take care of the rest. We will call the probabilities
for X1 f

1 or f(1). That is, P (X1 = j) = f1
j . The latter may also be written

f(j, 1). In general we use notation f tj = P (Xt = j). Using f1 and the Pjk, we
can calculate the probabilities of paths:

P (X1 = j and X2 = k) = f1
j · Pjk ,

P (X1 = j and X2 = k and X3 = l) = f1
j · Pjk · Pjk ,

and so on. Expressed slightly differently, we have

P (X) = f1
X1
· PX1,X2 · · · · · PXT−1,XT . (1.4)

1.2.7 Example 3, coin flips:

The state space has m = 2 states, called U (up) and D (down). H and T would
conflict with T being the length of the chain. Let us consider paths of length
T = 50. Example 1 has paths of length 4. Let us suppose that a coin starts in
the U position. At every time step, the coin turns over with 20% probability.
The transition probabilities are PUU = .8, PUD = .2, PDU = .2, PDD = .8. The
transition matrix is (taking U for 1 and D for 2):

P =

(
.8 .2
.2 .8

)
For example, we can calculate

P 2 = P · P =

(
.68 .32
.32 .88

)
and P 4 = P 2 · P 2 =

(
.5648 .4352
.4352 .5648

)
.

This implies that P (X5 = U) = P (X1 = U → X5 = U) = P 5
UU = .5648

11



1.2.8 Example 4, hidden Markov model:

There are two coins, F (fast) and S (slow). Either coin will be either U or D at
any given time. Only one coin is present at any given time but sometimes the
coin might be replaced (F for S or vice versa) without changing its U–D status.
The F coin has the same U–D transition probabilities as example 3. The S coin
has U–D transition probabilities:(

.9 .1
.05 .95

)
The probability of coin replacement at any given time is 30%. The replacement
(if it happens) is done after the (possible) coin flip without changing the U–D
status of the coin after that flip. The Markov chain has 4 states, which can be
numbered (somewhat arbitrarily) 1: UF, 2: DF, 3: US, 4: DS. States 1 and
3 are U states while states 1 and 2 are F states, etc. The transition matrix is
4 × 4. We can calculate, for example, the (non) transition probability for UF
→ UF. We first have a U → U (non) transition then an F → (non) transition.
The probability is then P (U → U | F ) · P (F → F ) = .8 · .7 = .56. The other
entries can be found in a similar way. The transitions are:

UF → UF UF → DF UF → US UF → DS
DF → UF DF → DF DF → US DF → DS
US → UF US → DF US → US US → DS
DS → UF DS → DF DS → US DS → DS

 .

The resulting transition matrix is

P =


.8 · .7 .2 · .7 .8 · .3 .2 · .3
.2 · .7 .8 · .7 .2 · .3 .8 · .3
.9 · .7 .1 · .7 .9 · .3 .1 · .3
.05 · .7 .95 · .7 .05 · .3 .95 · .3

 .

If we start with UF and want to know the probability of being D after 4 time
periods, the answer is P 4

12 + P 4
14 because states 2 = DF and 4 = DS are the

two D states.

1.2.9 Example 5, incomplete state information:

In the model of example 4 we might be able to observe the U–D status but not
F–S. Suppose Yy = U if Xt = UF or Xt = UD, and Yt = D if Xt = DF or
Xt = DD. Then the sequence Yt is a stochastic process but it is not a Markov
chain. We can better predict U ↔ D transitions if we know whether the coin is
F or S, or even if we have a basis for guessing. For example, suppose Y8 = U and
we want to guess whether Y9 will again be U. If Y7 is D then we are more likely
to have the F coin so a Y8 = U → Y9 = D transition is more likely. That is,
with Y8 fixed, Y7 = D makes it less likely to have Y9 = U . This is a violation of
the Markov property brought about by incomplete state information. Models

12



of this kind are called “hidden markov” models. We suppose that there is a
Markov chain but that we have incomplete information about it. Statistical
estimation of the unobserved variable is a topic for another day.
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Chapter 2

Lecture 2

2.1 Simple Random Walk

Simple random walk is a great example of Markov chains. We will see lots of the
big topics: martingales, forward and backward equations, change of measure,
hitting times, etc. First for random walk, then for more general cases (Markov
chains), then for harder cases (stochastic processes, diffusions).

2.1.1 Definition:

The state space is the set of all integers, 0, ±1, etc. The path starts with X0 = 0.
At each time, the path moves at most one unit to the left or right. I will use
the notation p for the probability of moving to the right, q for the probability of
moving to the left, and 1− (p+ q) for the probability of not moving. Warning:
this is not standard notation. Formally, this can be written as:

p = P (x→ x+ 1) = P (Xt+1 = x+ 1 | Xt = x) ,

q = P (x→ x− 1) = P (Xt+1 = x− 1 | Xt = x) ,

1− (p+ q) = P (x→ x) = P (Xt+1 = x | Xt = x) .

The walk is called “symmetric” or “unbiased” if p = q. Otherwise, the walk is
unsymmetric or biased. Some of the analysis is simpler if p+q = 1 so that there
are only two possible states at time t+ 1 instead of 3.

2.1.2 Quantities of interest:

Our work will focus on calculating various quantities. The most basic is E[V (Xt)]
for some “payout” function V (x). Another involves hitting times, the first time
Xt reaches some set. For example, we could define τ to be the first time |Xt| = 5.
Other quantities of interest might be average values such as

E

[
1

T

T∑
t=1

V (Xt)

]
,
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E

[
max

1≤t≤T
X2
t

]
,

and so on.

2.1.3 Ft:

The algebra of sets determined by knowing the path up to and including time
t is called Ft. This algebra is generated by the random variables X1, . . ., Xt.
A partition (see Lecture 1, paragraph 1.21) of sets generating Ft is given as
follows: for every fixed path, x = (x1, . . . , xt), of length t, associate Bx, the set
of all paths that have the same values up to time t: X1 = x1, . . ., Xt = xt.
We can calculate P (Bx) by multiplying the transition probabilities for the given
transitions xs → xs+1 as in Lecture 1, paragraph 2.6.

2.1.4 Conditioning on Ft:

Many of the techniques for computing quantities such as in paragraph 1.2 are
based on computing the conditional expectations with respect to Ft. The
Markov property makes this possible. Suppose that ft is some function of the
path that is determined by the path up to time t, ft(X) ∈ Ft. This means that
the value of ft is determined by the random variables X1, . . ., Xt (see lecture
1, paragraph 1.17). Another way to say this is that ft must be constant on the
basic partition sets Bx, that is, have a single value for each sequence x1, . . .,
xt. Maybe the best way to say it is that ft is determined by the information up
to time t and that this information is precisely the values of Xs for 1 ≤ s ≤ t.
Suppose that F (X) is some function of the path, X, up to time T (examples in
paragraph 1.2). Then define

ft = E[F | Ft] .

The unconditional expectations are f0, which is a constant (since it doesn’t
depend on anything).

2.1.5 Backwards equations:

The technique for computing f0 is to compute first fT = F , then compute fT−1

from fT , and in general to have a way to compute ft from ft+1. An equation
for ft in terms of ft+1 is a “backward equation” because time runs backward.
A fair part of the course is finding and solving backward equations. Backward
equations are simple because going from Ft+1 to Ft removes only one variable,
Xt+1. By the principle of repeated expectations (lecture 1, paragraph 1.?),
because there is more information in Ft+1 than in Ft (Ft ⊂ Ft+1),

ft = E[ft+1 | Ft] .

Now, in the case of random walk, if we have the Ft information, we know, in
particular, the value ofXt. This leaves only 3 possible values ofXt+1. Therefore,
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the expectation on the left above is just a sum of 3 terms (see paragraph 1.1):

ft(X1, . . . , Xt) = p · ft+1(X1, . . . , Xt, Xt + 1)

+ q · ft+1(X1, . . . , Xt, Xt − 1)

+ (1− (p+ q)) · ft+1(X1, . . . , Xt, Xt) .

In most cases where this backward equation is practical, the functions ft and
the backward equation are simpler than the general case given here, usually
because of the special form of the original F and the Markov property.

2.1.6 Expected payouts:

A simple and useful illustration of these ideas is the “final payout” case F (X) =
V (XT ). In that case, the functions ft depend on Xt only. If we call that variable
just n, we have

ft(n) = p · ft+1(n+ 1) + q · ft+1(n− 1) + (1− (p+ q)) · ft+1(n) .

This is truly practical, computing one function of one variable in terms
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Chapter 3

Lecture 3

3.1 Recurrence relations for Markov Chains

3.1.1 Recapitulation and notation:

To summarize terminology for Markov Chains (lecture 1, paragraph 2.??)

Ft: the algebra generated by X1, . . ., Xt. The partition generating Ft con-
sists of sets Bx where x = (x1, . . . , xt), is an initial segment of a path of
lenght t. The sets are Bx = {X | X1 = x1, . . . , Xt = xt}. To check your
understanding, show that the number of paths in Bx is sT−t, where s is
the number of states: s = |S|. This algebra represents knowing the path
X up to and including time t. Being measurable with respect to Ft means
being constant on each of the sets Bx, i.e. a function of X1, . . ., Xt.

Gt: the algebra generated by Xt alone. The patrition generating Gt consists of
one set, Bj , for each state j ∈ S. Then Bj = {X | Xt = j}. There are s
such Bj , each with sT−1 paths. This algebra represents knowing only the
present state but not past or future states. Being measurable with respect
to Gt means being constant on each of the Bj , i.e. a function of j.

Ht: the algebra generated by Xt, . . ., XT . This represents knowledge of the
present and all future states.

The Markov property is that

E [F (X) | Gt] = E [F (X) | Ft] ,

for any F ∈ Ht (i.e. F depending only on present and future states). This is
the modern version. The classical expression for the same property is that if F
depends only on Xt, . . ., XT , then

E [F (X) | Xt = j] = E [F (X) | Xt = j,Xt−1 = k, . . .] .
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3.1.2 The “law of total probability”:

The classical theorem is that if Bk, k = 1, . . . , n is any partition of Ω, then, for
any function,

E [F ] =

n∑
k=1

P (Bk)E [F | Bk] .

It is easy to verify this using the (classical) definition of conditional expectation.
This is a special case of a relation about modern style conditional expectation:
if F and G are two algebras with G ⊂ F , (G has less information) then

E[F | G] = E [E[F | F ] | G] .

The classical statement corresponds to the modern one with G being the “trivial”
algebra consisting of only ∅ and Ω. A classical statement of the more general
modern version might start with any event, A. The relation is

E[F | A] =

n∑
k=1

P (Bk | A) · E[F | Bk and A] .

3.1.3 Backward equation, classical version:

The simplest case is when we want the expected value of a “payout”, V , that
depends only on the final state: F (X) = V (XT ). It is possible to compute
E[V (XT )] as the byproduct of a system collection of calculations of related
quantities:

ft(j) = E [V (XT ) | Xt = j] .

We apply the law of total probability to the right side with A being the event
Xt = j and Bk defined respectively by Xt+1 = k. The Markov property implies
that

E [V (XT ) | Xt+1 = k and Xt = j] = E [V (XT ) | Xt+1 = k] = ft+1(k).

This gives:

ft(j) =

s∑
k=1

P (Xt+1 = k | Xt = j) · E[V (XT ) | Xt+1 = k and Xt = j]

ft(j) =

s∑
k=1

Pjkft+1(k) . (3.1)

This gives us a way to calculate all the ft(j) working backwards in time. The
final values fT (j) are clearly given by

FT (j) = E[V (XT ) | XT = j] = V (j) .

Then we can use (3.1) to compute all the values fT−1, then all the values fT−2,
and so on. It is a major shortcoming of the backward equation method that you
must compute the values of ft(j) for each state j ∈ S. In many cases S, though
finite, is too large for such computations to be practical. Backward equation,
classical version:
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3.1.4 Backward equation, matrix version:

The equation (3.1) may be expressed in matrix terms. For each t, define a
vector, ft, with s components given by

ft = (ft(1), . . . , ft(s))
∗ .

The notation (ft(1), . . . , ft(s))
∗ refers the column vector that is the transpose

of the row vector (ft(1), . . . , ft(s)). We will make good use of the distinction
between row vectors, which may be thought of an 1 × s matrices, and column
vectors, which may be thought of as s × 1 matrices. The recurrence relation
(3.1) is equivalent to

ft = P · ft+1 . (3.2)

Here, P is the transition matrix defined in lecture 1, paragraph 2.??, and the
right side is interpreted as matrix multiplication. If ft were a row vector, the ex-
pression P ·ft+1 would not make sense as matrix multiplication. The recurrence
relation (3.2) may be iterated to give

ft−k = P kft .

3.1.5 Forward equation, classical version:

The backward equation describes the evolution of expectation values while the
forward equation describes the evolution of probabilities. We use the notation

ut(j) = P (Xt = j) .

We can compute the time t + 1 probabilities in terms of the time t probabil-
ities using the law or total probability above. We wish to compute ut1(k) =
P (Xt+1 = k) and the partition is the s events Bj = {Xt = j}. This gives

ut+1(k) = P (Xt+1 = k)

=

s∑
j=1

P (Xt = j)P (Xt+1 = k | Xt = j)

ut+1(k) =

s∑
j=1

ut(j)Pjk (3.3)

This is a forward moving evolution equation that allows us to compute the
probability distribution at later times from the distribution at earlier times.

3.1.6 Initial data and path probabilities:

A point I’ve ignored until now is that the transition matrix alone does not
determine the probabilities. We also need the initial probabilities P (X1 = j) =
u1(j). Right now, that means that the “initial values” or “initial data” we need
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to compute all the ut(j) is actually new information. With this we can complete
the path probability computation. If X = (X1, X2, . . . , XT ), it’s probability is

P (X) = u1(X1)

T−1∏
t=1

PXt,Xt+1 .

3.1.7 Forward equation, matrix version:

In contrast to the matrix version of the backward equation, we let ut be the
row vector ut = (ut(1), . . . , ut(s)). Then the forward equation (3.3) may be
expresses as

ut+1 = utP , (3.4)

where P again is the transition matrix. It may seem odd to express matrix
vector multiplication with the vector on the left of the matrix, but it is natural
if we think of ut as a 1× s matrix. The expression Put is not even compatible
for matrix multiplication. As with the backward equation, we can iterate (3.2)
to get, for example, ut = u1P

t−1.

3.1.8 Expectation value:

We combine the conditional expectations ft(j) defined in paragraph 1.3 with
the probabilities ut(j) above and the law of total probability to get, for any
given t,

E[V (XT )] =

s∑
j=1

P (Xt = j)E[V (XT ) | Xt = j]

=

s∑
j=1

ut(j)ft(j)

= utft .

The last line is the matrix product of the row vector ut, thought of as a 1 × s
matrix, with the column vector ft, thought of as an s× 1 matrix. By the rules
of matrix multiplication, the result should be a 1× 1 matrix, that is, a number.
We will be using this formula and generalizations of it often throughout the
course. For now, note the curious fact that although ut and ft are different for
different t values, the product utft is not; it is invariant. For this invariance
to be possible, the forward evolution for ut and the backward evolution for ft
must be related.

3.1.9 Relationship between the forward and backward equa-
tions:

In fact, if we know that utft is independent of t, then the backward evolu-
tion (3.2) implies the forward evolution (3.4) and vice versa. For example,
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ut+1ft+1 = utft, together with the backward evolution implies that ut+1ft+1 =
utPft+1. This implies that

(ut+1 − utP ) ft+1 = 0 .

(Note that we used the associativity, (AB)C = A(BC), of matrix multiplication
(u(Pf) = (uP )f) and the distributive property. This is why we were eager to
express the evolution equations as matrix multiplication and, in particular, to
distinguish between row and column vectors.) If this is true for a set of s linearly
independent vectors ft+1, then the vector (ut+1 − utP ) must be zero, which
is (3.4). A theoretically minded reader can verify that enough f vectors are
available if the transition matrix is nonsingular. In the same way, the backward
evolution of f is a consequence of invariance and the forward evolution of u.

3.1.10 Duality:

Duality refers to a collection of ideas useful in linear algrbra and its general-
izations. In it’s simplest form, it is the relationship between a matrix and it’s
transpose. The set of column vectors with s components is a vector space. The
set of s component row vectors is the dual space. We can combine an element of
a vector space with an element of its dual to get a number. This is the product
of the 1 × s matrix u with the s × 1 matrix f . Any linear transformation on
the vector space of column vectors is represented by an s × s matrix, P . This
matrix then defines a linear transformation, the dual transformation, on the
dual space of row vectors, given by u → uP . In this sense, the forward and
backward equations are dual to each other.

3.1.11 Duality, adjoint, and transpose:

Duality may be related to the matrix transpose operation. If you want to keep
all vectors as colums, then the row vector we called u would be called u∗ for the
column vector u. We denote the transpose of a real matrix by a ∗ so that T or t
is not over used. If we think of u as a column vector, then the forward evolution
equation (3.4) would be written ut+1 = P ∗ut. For this reason, the transpose of
a matrix is sometimes called its dual. The invatiant quantity would be written
u∗t ft, etc. If we ever meet a matrix, A, with complex entries, A∗ will denote the
conjugate transpose matrix: flip the matrix and take the complex conjugate of
the entries. That matrix is often called the adjoint matrix to A. Warning, the
term “adjoint” is often used for the matrix det(A)A−1, whose entries are the
determinants of principal minors of A. I will not use adjoint in this sense. Later
in the course, the matrix P will be replaced by a “differential operator” that
is he “generator” of a kind of Markov process. The adjoint of the generator is
another differential operator. Duality will be with us until the end.
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3.2 Martingales and stopping times

3.2.1 Stochstic process:

We have a probability space, Ω. The information available at time t is repre-
sented by the algebra of events Ft. We assume that for each t, Ft ⊂ Ft+1; since
we are supposed to gain information every known event in Ft is also known at
time t + 1. A stochastic process is a family of random variables, Xt(ω), with
Xt ∈ Ft (reminder, this in an abuse of notation that represents the hypothesis
that Xt is measureable with respect to Ft). Sometimes it happens that the
random variables Xt contain all the information in the Ft in the sense that Ft
is generated by X1, . . ., Xt. This the “minimal algebra” in which the Xt form
a stochastic process. In other cases Ft contains more information. Economists
use these possibilities when they distinguish between the “weak efficient mar-
ket hypothesis” (the Ft are minimal), and the “strong hypothesis” (Ft contains
all the information in the world, literally). In the case of minimal Ft, it may
be possible to identify the outcome, ω, with the path X = X1, . . . , XT . This
is not possible when the Ft are not minimal. For the definition of stochastic
process, the actual probabilities are not important, just the algebras of sets and
“random” variables Xt.

3.2.2 Example 1, Markov chains:

In this example, the Ft are minimal and Ω is the path space of sequences of
length T from the state space, S. The variablesXt are may be called “coordinate
functions” becauseXt is coordinate t (or entry t) in the sequenceX. In principle,
we could express this with the notation Xt(X), but that would drive people
crazy. Although we distinguish between Markov chains (discrete time) and
Markov processes (continuous time), the term “stochastic process” can refer to
either continuous or discrete time.

3.2.3 Example 2, diadic sets:

This is a set of definitions for discussing averages over a range of length scales.
The “time” variable, t, represents the amount of averaging that has been done.
At the “first” time, t = 1, we have only the overall average. At “later” times,
we have averages over smaller and smaller sets. Only at the final time, T , is the
original random variable completely known. To go from time t + 1 to time t,
we combine two level t + 1 averages to produce a coarser level t average. The
actual averaging process is discussed below. Here we only define the sets being
averaged over. The coming definitions would be simpler if time and “space”
variables were to start with 0 rather than 1. I’ve chosen to start always with
1 to be consistent with notations used above and below. The whole space,
Ω, consists of 2T−1 objects, which we call 1, . . ., 2T−1 (It would be 2t if we
were to start with t = 0 rather than t = 1.). The partition defining Ft is
given by “diadic” sets with 2T−t consecutive elements each, called Bt,k for k =
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1, . . . , 2t−1. At time t = 1 there is just one B, which is the whole of Ω. At time
t = 1, there are two, B2,1 = {1, . . . , 2T−2}, and B2,2 = {2T−2 + 1, . . . , 2T−1}.
At time T − 1 there are |Ω| /2 = 2T−2 diadic sets with two elements each:
BT−1,1 = {1, 2}, BT−1,2 = {3, 4}, . . ., BT−1,2T−2 = {2T−1 − 1, 2T−1}. At level
T −2, the partition sets BT−2,k contain 4 consecutive elements each. In general,
Bt,k = {(k− 1)2T−t + 1, . . . , k2T−t}. The reader should check in detail that the
general definition agrees with the cases t = 1, 2, T − 2, T − 1, and T . The diadic
property is that each level t set is the uninion of two consecutive level t+ 1 sets:
Bt,k = Bt+1,2k−1 ∩Bt+1,2k.

For now, we will take the define the Xt by Xt(ω) = k if ω ∈ Bt, k. For
example, this gives XT (ω) = ω, X1(ω) = 1 for all ω ∈ Ω, and, in general,
Xt(ω) = int(ω/2??), where int(a) is the largest integer not exceeding a.

3.2.4 Martingales:

A real valued stochastic process, Xt, is a martingale if

E[Xt+1 | Ft] = Xt .

If we take the overall expectation of both sides we see that the expectation value
does not depend on t, E[Xt+1] = E[Xt]. The martingale property says more.
Whatever information you might have at time t notwithstanding, still the expec-
tation of future values is the present value. There is a gambling interpretation:
Xt is the amount of money you have at time t. No matter what has happened,
your expected winnings at between t and t + 1, the “martingale difference”
Yt+1 = Xt+1 −Xt, has zero expected value. You can also think of martingale
differences as a generalization of independent random variables. If the random
variables Yt were actually independent, then the sums Xt =

∑t
k=1 Yt would

form a martingale (using the Ft, generated by the Y1, . . ., Yt). The reader
should check this.

3.2.5 A lemma on conditional expectation:

In working with martingales we often make use of a basic lemma about condi-
tional expectation. Suppose U(ω) and V (ω) are real valued random variables
and that V ∈ F . Then

E[V U | F ] = V E[U | F ] .

This is easy to see in the classical definition of conditional expectation. Suppose
B is one of the sets in the partition defining F and that W = E[U(ω) | ω ∈ B].
We know that V (ω) is constant in B because V ∈ F . Call this value v. Then
E[V U | B] = vE[U | B] = vW . This shows that no matter which partition set
ω falls in, E[V U | B] = V E[U | B], which is exactly the (classical version of)
the lemma.
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3.2.6 More martingales:

This lemma leads to lots of martingales. Suppose the “multipliers” Mt are
functions of Y1, . . ., Yt−1 (leaving out Yt), then the sums Xt =

∑t
k=1MtYt also

form a martingale if the Yt have mean value zero. Let us check this. In the
algebra Ft we know the values of all the Yk for 1 ≤ k ≤ t. Therefore, we know
the value of Mt+1, which is to say that Mt+1 ∈ Ft. This shows that

E[Xt+1 | Ft] = Xt +Mt+1E[Yt+1 | Ft] = Xt .

At the end we used the fact that E[Yt+1] = 0, and that Yt+1 is independent
of all the earlier Yk which generarate Ft. This is a simple generalization of
summing independent mean zero random variables. Even though the martingale
differences Xt+1 − Xt = Mt+1Yt+1 are not independent, they still have mean
value zero, conditioned on Ft.

3.2.7 Weak and strong efficient markets:

It is possible that the family of random variables Xt might or might not form
a martingale depending on what increasing family of algebras you use. For
example, suppose Xt is a stochastic process with respect to the algebras Ft
and form a martingale with respect to them. Now suppose Gt is the algebra
generated by X1, . . ., Xt+1. Clearly, E[Xt+1 | Gt] = Xt+1 6= Xt. The Xt

form a martingale with respect to the Ft but not with respect to the additional
information in Gt.

3.2.8 Doob’s principle:

Notice what happened here. We started with a simple martingale that was built
of the sum of independent mean zero random variables. Then we built a more
complex stochastic process, Xt+1 = Xt +Mt+1Yt+1, where the value of Mt+1 is
known at time t. One can think of this as building an investment strategy; col-
lecting information by watching the market up to time t then placing a “bet” of
size M on the still unknown random variable Yt+1. No matter how this is done,
the result is still a martingale. This is a general feature of martingales: any
betting strategy that at time t uses only Ft information produces another mar-
tingale. Other instances of this principle are formulated below. This “Doob’s
principle”, named for the probabilist who formulated it, is one of the things that
makes martingales handy.

3.2.9 Example, conditional expectations:

Suppose Ft is any expanding family of algebras and V is any random variable.
(We are allowed to say “any”, with no technical hypotheses, because Ω is finite.
This luxury does not last forever.) The conditional expectations Ft = E[V | Ft]
form a martingale. This is a consequence of the rules of iterated conditional
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expectation, lecture 1, paragraph 1.??. In particular, if Xt are the states of a
Markov chain, then the random variables

Ft = ft(Xt) = E[V (XT ) | Ft]

form a martingale.

3.2.10 Example 2, continued:

Suppose we have a function V (ω) defined for integers ω in the range 1 ≤ ω ≤
2T−1. Suppose that we specify uniform probabilities, P (ω) = 2−T+1, for all ω.
Then the conditional expectations that are the values of Ft are averages of V
over dyadic blocks of size 2T−t. The random variable F1 is just the average of
V . Next, F2(ω) equals the average over the first half if ω is in the first half and
over the second half if ω is in the second half. The graph of F1 is just a constant
while the graph of F2 is two constants separated by a step at the midpoint.
The graph of F2 is 4 constants with 3 steps, and so on. If we plot all these
graphs together, we get a better and better picture of the graph of the original
function, V . You could do the same with a two dimensional function given by
an image. What this looks like can be seen on the class bboard.

3.2.11 Doob’s principle continued:

Suppose Ft is any martingale with martingale differences Yt = Ft − Ft−1, and
that Mt ∈ Ft. Then the modified stochastic process Gt defined by

Gt+1 = Gt +MtYt+1

is also a martingale. This follows as before: E[Gt+1−Gt | Ft] is just E[MtYt+1 |
Ft] which vanishes because Mt ∈ Ff and E[Yt+1 | Ft] = 0.

3.2.12 Investing with Doob:

Economists sometimes use this to make a point about active trading in the stock
market. Suppose that Ft, the price of a stock at time t is a martingale. Suppose
that at time t we look at the entire history of F from time 1 to t an decide an
amount Mt to invest at time t. The change in our “portfolio” (shares in 1 stock
and cash) value by time t + 1 will be Mt(Ft+1 − Ft) = MtYt+1. The portfolio
value at time t will be Gt. The fact that the values Gt also form a martingale is
said to show that active investing is no better than a “buy and hold” strategy
that just produces the value Ft, or a multiple of it depending on how much you
invest. The well known book A Random Walk on Wall Street is mostly
an exposition of this point of view. The fallacy is that investors are not only
interested in the expected value, but also in the risk.
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3.2.13 Stopping times:

We have Ω and the expanding family Ft. A stopping time is a function τ(ω)
that is one of the times 1, . . ., T , so that the event {τ ≤ t} is in Ft. Stopping
times might be thought of as possible strategies. Whatever your criterion for
stopping is, you have enough information at time t to know whether you should
stop at time t. Many stopping times are expressed as the first time something
happens, such as the first time Xt > a. We cannot ask to stop, for example, at
the last t with Xt > a because we might not know at time t whether Xt′ > a
for some t′ > t.

3.2.14 Doob’s stopping time theorem for one stopping
time:

Because stopping times are nonanticipating strategies, they also cannot make
money from a martingale. One version of this statement is that E[Xτ ] = E[X1].
The proof of this makes use of the events Bt, that τ = t. The stopping time
hypothesis is that Bt ∈ Ft. Since τ has some value 1 ≤ τ ≤ T , the Bt form a
partition of Ω. Also, if ω ∈ Bt, τ(ω) = t, so Xτ = Xt. Therefore,

E[X1] = E[XT ]

=

T∑
t=1

E[XT | Bt]P (Bt)

=

T∑
t=1

E[Xτ ]P (τ = t)

= E[Xτ ] .

In this derivation we made use of the classical statement of the martingale prop-
erty, if B ∈ Ft then E[XT | B] = E[Xt | B]. In our B = Bt, Xt = Xτ .

This simple idea, using the martingale property applied to the partition Bt, is
crucial for much of the theory of martingales. The idea itself was first used
Kolmogorov in the context of random walk or Brownian motion. Doob real-
ized that Kolmogorov’s was even simpler and more beautiful when applied to
martingales.

3.2.15 Stopping time paradox:

The technical hypotheses above, finite state space, bounded stopping times, may
be too strong, but they cannont be completely ignored, as this famous example
shows. Let Xt be a symmetric random walk starting at zero. This forms a
martingale, so E[Xτ ] = 0 for any stopping time, τ . On the other hand, suppose
we take τ = min(t | Xt = 1). Then Xτ = 1 always, so E[Xτ ] = 1. The catch
is that there is no T with τ(ω) ≤ T for all ω. Even though τ < ∞ “almost
surely” (more to come on that expression), E[τ ] =∞ (explination later). Even
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that would be OK if the possible values of Xt were bounded. Suppose you
choose T and set τ ′ = min(τ, T ). That is, you wait until Xt = 1 or t = T ,
whichever comes first, to stop. For large T , it is very likely that you stopped for
Xt = 1. Sill, those paths that never reached 1 probably drifted just far enough
in the negative direction so that their contribution to the overall expected value
cancels the 1 to yield E[Xτ ′ ] = 0.

3.2.16 More stopping times theorem:

Suppose we have an increasing family of stopping times, 1 ≤ τ1 ≤ τ2 · · · . In a
natural way the random variables Y1 = Xτ1 , Y2 = Xτ2 , etc. also form a martin-
gale. This is a final elaborate way of saying that strategizing on a martingale is
a no win game.
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Chapter 4

Lecture 4

4.1 Continuous probability

This section is a quick and sketchy introduction to the modern terminology of
probability following Kolmogorov in what we call continuous spaces. Although
the modern approach has lots of baggage, it ultimately makes things easier, as
we will begin to see here.

4.1.1 Continuous spaces

I use this to mean probability spaces that are not countable (discrete). In
discrete probability, we first defined P (ω), the probability of any particular
outcome. Then the probability of an event, A was the sum of the probabilities
of the outcomes that make up that event:

P (A) =
∑
ω∈A

P (ω) . (4.1)

In continuous probability, the rule (though there are exceptions), is that the
probability of any particular outcome is zero. Also, there are uncountably many
outcomes in a typical event. Both of these make (4.1) inapplicable. We do not
know how to sum uncountable many numbers, and, we might expect such a sum
rule to give the answer zero if all the terms in the sum were zero.

Examples of continuous probability spaces:

R, the real numbers. If ω is a real number and u(x) is a probability density,
then the probability of a small interval (ω− ε, ω+ ε) containing ω is (with
an abuse of notation)

P (ω − ε, ω + ε) =

∫ ω+ε

ω−ε
u(x)dx→ 0 as ε→ 0.

Thus the probability of ω itself should naturally be zero.
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Rn, sequences of n numbers (possibly viewed as a row or column vector de-
pending on the context): X = (x1 . . . , Xn).

SN . Here S is the state space for a Markov chain (might be finite or countable)
and N is the “natural” numbers, 1, 2, 3, . . .. An element is an infinite
sequence of elements of S: X = (X1, X2, . . .). Generally, the probability
of any particular infinite sequence is zero. For example, if we have a two

state Markov chain with transition matrix

(
.6 .4
.3 .7

)
. If we call the

states U and D, then the probability of the infinite string UUU · · · should
be u(U) · .6 · .6 · · · · = 0: multiplying together infinitely many .6 numbers
converges to zero.

C([0, T ] → R), the path space for Brownian motion. The C stands for “con-
tinuous”. The [0, T ] is the time interval 0 ≤ t ≤ T ; the square brackets
tell us to include the endpoints (0 and T in this case). Round parentheses
(0, T ) would mean to leave out 0 and T . The final R is the “target” space,
the real numbers in this case. An element of Ω is a continuous function
from the interval [0, T ] to R. If we call this function Xt for 0 ≤ t ≤ T , Xt

is a real number for each t ∈ [0, T ] and X is a continuous function of t.

4.1.2 Probability measures:

We want to define the probabilities of events A ⊂ Ω. Since we cannot base
these on the probabilities of the individual outcomes in A, we just assume the
probabilities are defined for events. For this we first define σ−algebra. An
algebra of events is a σ−algebra if, for any sequence of events An ∈ Ω, the
union union ∪∞n=1An is also an event in F . Suppose F is a σ−algebra of events
in Ω. The numbers P (A) for A ∈ F are a “probability measure” if

i. If A ∈ F and B ∈ F are disjoint events, then P (A ∪B) = P (A) + P (B).

ii. P (A) ≥ 0 for any event A ∈ F .

iii. P (Ω) = 1.

iv. If An ∈ F is a sequence of events each disjoint from all the others and
∪∞n=1An = A, then

∑∞
n=1 P (An) = P (A).

The last property is called “countable additivity”. All the probability measures
we deal with in this course are countably additive.

4.1.3 Rn:

A “ball” in n dimensional space is any of the sets Br(x) = {y | |x − y| < r.
This might be called an interval in one dimension and a disk in two, but the
term ball applies to any dimension, including 1 and 2. With |x − y| ≤ r, we
would have a “closed” ball, as opposed to the “open” ball above. This makes no
difference here. In fact, a σ−algebra that contains all open balls also contains all
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closed balls, and any set in Rn you can describe without advanced mathematical
analysis. The σ−algebra generated by open balls is called the Borel algebra,
and events measurable in this algebra are called Borel sets. A function u(x) is a
probability density if it is never negative and

∫
Rn

u(x)dx = 1. Such a probability
density defines a probability measure on the Borel algebra by

P (A) =

∫
A

u(x)dx .

It is can be shown that if u is measurable with respect to the Borel sets then
this probability measure is countable additive.

4.1.4 Integration with respect to a measure:

The definition of integration with respect to a general probability measure is
easier than the definition of the Riemann integral. Let Ω be a probability
space, F a σ−algebra of events, and P a probability measure. A function
f(ω) is measurable with respect to F if all of the events Aab = {a ≤ f ≤ b}
= {ω | a ≤ f(ω) ≤ b} are in F . Because F is an algebra, the condition a ≤ f
can be replaced by a < f , etc. Any function on Rn (i.e. any function of n real
variables), no matter how many weird discontinuities you try to throw in, will be
measurable with respect to the Borel algebra, unless you know serious advanced
analysis. It happens in general that a function may fail to be measurable with
respect to some F , but this will always (in this course) be due to a lack of
information (small F) rather than discontinuities in u.

The integral is written

E[f ] =

∫
ω∈Ω

f(ω)dP (ω) .

In Rn with a density u, this agrees with teh classical definition

E[f ] =

∫
Rn

f(x)u(x)dx .

Note that the abstract variable ω is replaced by the concrete variable, x, in this
more concrete situation. The general definition is forced on us once we make
the natural requirements

i. If A ∈ F is any event, then E[1A] = P (A). The integral of the indicator
function if an event is the probability of that event.

ii. If f1 and f2 have f1(ω) ≤ f1(ω) for all ω ∈ Ω, then E[f1] ≤ E[f2]. “Integra-
tion is monotone”.

iii. For any reasonable functions f1 and f2 (e.g. bounded), we have E[af1 +
bf2] = aE[f1] + bE[f2]. “Integration is linear”.
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Now suppose f is a nonnegative bounded function: 0 ≤ f(ω) ≤ M for all
ω ∈ Ω. The integral of f is determined by the three properties above. Choose
a small number ε and define the “ring sets” An = {(n − 1)ε ≤ f < nε. The
An depend on ε but we do not indicate that. Although the events An might
be complicated, fractal, or whatever, Each of them is measurable. The “step
function” g(ω) =

∑
n(n − 1)ε1An takes the value (n − 1)ε on each of the sets

An (each ω is in only one An. For any ω, only one of the terms in the sum is
different from zero.). The sum defining g is finite because f is bounded, though
the number of terms is M/ε. Also, g(ω) ≤ f(ω) for each ω ∈ Ω (though by at
most ε). Therefore, the three properties of integration imply that

E[f ] ≥ E[g] =
∑
n

(n− 1)εE[An] =
∑
n

(n− 1)εP ((n− 1)ε ≤ f < nε) .

In the same way, we can consider the upper function h =
∑
n nε1A−n and have

E[f ] ≤ E[h] =
∑
n

nεE[An] =
∑
n

nεP ((n− 1)ε ≤ f < nε) .

If you draw a picture of this situation for Ω = R, you will see the lower (g)
and upper (h) step functions bracketing f . When you replace ε by ε/2, the
lower step goes up and the upper step goes down. This gives a sequence of
approximations G(ε) ≤ E[f ] ≤ H(ε) with G(ε) increasing and H(ε) decreasing
as ε → 0. Finally, note that H(ε) − G(ε) ≤ ε, because that is how close the
upper and lower step approximations h and g are. Thus, as ε → 0, the upper
and lower approximations converge to the same number, which must be E[f ].
It is sometimes said that the difference between classical (Riemann) integration
and modern integration (here) is that we used to cut the x axis into little pieces,
but it is simpler to cut the y axis instead.

If the function f is positive but not bounded, it might happen that E[f ] =∞.
The “cut off” functions, fM (ω) = min(f(ω),M), might have E[fM ] → ∞ as
M → ∞. If f is both positive and negative (for different ω), we integrate the
positive part, f+(ω) = max(f(ω), 0), and the negative part f−(ω) = min(f(ω), 0
separately and subtract the results. We do not attempt a definition if E[f+] =∞
and E[f−] = −∞.

4.1.5 Markov chains with T =∞:

The probability space, Ω, is the set of all infinite sequences X = (X1, X2, . . .),
where each Xt is one of the states in the state space S.

Just as the Borel algebra of sets can be generated by balls, the algebra of
sets here can be generated by “cylinder” sets (don’t ask me how they got that
name). For each sequence of length L, x = (x1, . . . , xl), there is a cylinder set
Bx = {X | X1 = x1, . . . , XL = xL}. Other sets can be made from countable
set operations starting with these. For example, the event containing the single
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sequence UUU · · · is the intersection of the events having the first L entries
U . In a slightly more complicated way, it is possible to express the event “the
first UUDDU occurs before the first DDUD” in terms of cylinder sets. The
probabilities P (Bx) = u1(X1)

∏L−1
t=1 Pxt,xt+1

give rise to a probability measure
that is countably additive on this σ−algebra, another theorem of Kolmogorov.

4.1.6 Conditional expectation:

We have a random variableX(ω) that is measurable with respect to the σ−algebra,
F , and a subalgebra G ⊂ F . We want to define the conditional expectation
Y = E[X | G]. When Ω is finite we can define Y (ω) be knowing which par-
tition block ω is in. In continuous probability, a subalgebra might or might
not be generated by a partition (I don’t know), but even if it were, the sets in
the partition would usually have probability zero so Bayes’ rule would not be
applicable. For example, suppose we have a two dimensional random variable
X = (X1, X2) with a density u(x1, x2) and we want P (X1 > 3 | X2 = 0). The
event B = {X2 = 0} has probability P (B) = 0. There is a “classical” definition
of conditional expectation for this case, but the one “modern” definition works
for all cases. The definition is that Y (ω) is the random variable measurable
with respect to G that best approximates X in the least squares sense

E[(Y −X)2] = minZ ∈ GE[(Z −X)2] .

This is one of the definitions we gave before, the one that works for continuous
and discrete probability. In the theory, it is possible to show that there is a
minimizer and that it is unique.

4.1.7 Generating a σ−algebra:

When the probability space, Ω, is finite, we can understand an algebra of sets
by using the partition of Ω that generates the algebra. This is not possible for
continuous probability spaces. Another way to specify an algebra for finite Ω
was to give a function X(ω, or a collection of functions Xk(ω) that are supposed
to be measurable with respect to F . We noted that any function measurable
with respect to the algebra generated by functions Xk is actually a function
of the Xk. That is, if F ∈ F (abuse of notation), then there is some function
u(x1, . . . , xn) so that

F (ω) = u(X1(ω), . . . , Xn(ω)) . (4.2)

The intuition was that F contains the information you get by knowing the val-
ues of the functions Xk. Any function measurable with respect to this algebra
is determined by knowing the values of these functions, which is precisely what
(4.2) says. This approach using functions is often convenient in continuous prob-
ability.

If Ω is a continuous probability space, we may again specify functions Xk that we
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want to be measurable. Again, these functions generate an algebra, a σ−algebra,
F . If F is measurable with respect to this algebra then there is a (Borel mea-
surable) function u(x1, . . .) so that F (ω) = u(X1, . . .), as before. In fact, it is
possible to define F in this way. Saying that A ∈ F is the same as saying that
1A is measurable with respect to F . If u(x1, . . .) is a Borel measurable function
that takes values only 0 or 1, then the function F defined by (4.2) defines a
function that also takes only 0 or 1. The event A = {ω | F (ω) = 1 has (obvi-
ously) F = 1A. The σ−algebra generated by the Xk is the set of events that
may be defined in this way. A complete proof of this would take a few pages.

4.1.8 Example in two dimensions:

Suppose Ω is the unit square in two dimensions: (x, y) ∈ Ω if 0 ≤ x ≤ 1 and
0 ≤ y ≤ 1. The “x coordinate function” is X(x, y) = x. The information in this
is the value of the x coordinate, but not the y coordinate. An event measurable
with respect to this F will be any event determined by the x coordinate alone.
I call such sets “bar code” sets. You can see why by drawing some.

4.1.9 Marginal density and total probability:

The abstract situation is that we have a probability space, Ω with generic out-
come ω ∈ Ω. We have some functions (X1(ω), . . . , Xn(ω)) = X(ω). With
Ω in the background, we can ask for the joint PDF of (X1, . . . , Xn), written
u(x1, . . . , xn). A formal definition of u would be that if A ⊆ Rn, then

P (X(ω) ∈ A) =

∫
x∈A

u(x)dx . (4.3)

Suppose we neglect the last variable, Xn, and consider the reduced vector
X̃(ω) = (X1, . . . , Xn−1) with probability density ũ(x1, . . . , xn−1). This ũ is
the “marginal density” and is given by integrating u over the forgotten variable:

ũ(x1, . . . , xn1) =

∫ ∞
−∞

u(x1, . . . , xn)dxn . (4.4)

This is a continuous probability analogue of the law of total probability: inte-
grate (or sum) over a complete set of possibilities, all values of xn in this case.

We can prove (4.4) from (4.3) by considering a set B ⊆ Rn−1 and the corre-
sponding set A ⊆ Rn given by A = B × R (i.e. A is the set of all pairs x̃, xn)
with x̃ = (x1, . . . , xn−1) ∈ B). The definition of A from B is designed so that

36



P (X ∈ A) = P (X̃ ∈ B). With this notation,

P (X̃ ∈ B) = P (X ∈ A)

=

∫
A

u(x)dx

=

∫
x̃∈B

∫ ∞
xn=−∞

u(x̃, xn)dxndx̃

P (X̃ ∈ B) =

∫
B

ũ(x̃)dx̃ .

This is exactly what it means for ũ to be the PDF for X̃.

4.1.10 Classical conditional expectation:

Again in the abstract setting ω ∈ Ω, suppose we have random variables (X1(ω), . . . , Xn(ω)).
Now consider a function f(x1, . . . , xn), its expected value E[f(X)], and the con-
ditional expectations

v(xn) = E[f(X) | Xn = xn] .

The Bayes’ rule definition of v(xn) has some trouble because both the denomi-
nator, P (Xn = xn), and the numerator,

E[f(X) · 1Xn=xn ] ,

are zero.

The classical solution to this problem is to replace the exact condition Xn =
xn with an approximate condition having positive (though small) probability:
xn ≤ Xn ≤ xn + ε. We use the approximation∫ xn+ε

xn

g(x̃, ξn)dξn ≈ εg(x̃, xn) .

The error is roughly proportional to ε2 and much smaller than either the terms
above. With this approximation the numerator in Bayes’ rule is

E[f(X) · 1xn≤Xn≤xn+ε] =

∫
x̃∈Rn−1

∫ ξn=xn+ε

ξn=xn

f(x̃, ξn)u(x̃, xn)dξndx̃

≈ ε

∫
x̃

f(x̃, xn)u(x̃, xn)dx̃ .

Similarly, the denominator is

P (xn ≤ Xn ≤ xn + ε) ≈ ε
∫
x̃

u(x̃, xn)dx̃ .
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If we take the Bayes’ rule quotient and let ε→ 0, we get the classical formula

E[f(X) | Xn = xn] =

∫
x̃
f(x̃, xn)u(x̃, xn)dx̃∫

x̃
u(x̃, xn)dx̃

. (4.5)

By taking f to be the characteristic function of an event (all possible events)
we get a formula for the probability density of X̃ given that Xn = xn, namely

ũ(x̃ | Xn = xn) =
u(x̃, xn)∫

x̃
u(x̃, xn)dx̃

. (4.6)

This is the classical formula for conditional probability density. The integral
in the denominator insures that, for each xn, ũ is a probability density as a
function of x̃, that is ∫

ũ(x̃ | Xn = xn)dx̃ = 1 ,

for any value of xn. It is very useful to notice that as a function of x̃, u and ũ
almost the same. They differ only by a constant normalization. For example,
this is why conditioning Gaussian’s gives Gaussians.

4.1.11 Modern conditional expectation:

The classical conditional expectation (4.5) and conditional probability (4.6) for-
mulas are the same as what comes from the “modern” definition from para-
graph 1.6. Suppose X = (X1, . . . , Xn) has density u(x), F is the σ−algebra of
Borel sets, and G is the σ−algebra generated by Xn (which might be written
Xn(X), thinking of X as ω in the abstract notation). For any f(x), we have
f̃(xn) = E[f | G]. Since G is generated by Xn, the function f̃ being measur-
able with respect to G is the same as it’s being a function of xn. The modern
definition of f̃(xn) is that it minimizes∫

Rn

(
f(x)− f̃(xn)

)2

u(x)dx , (4.7)

over all functions that depend only on xn (measurable in G).

To see the formula (4.5) emerge, again write x = (x̃, xn), so that f(x) = f(x̃, xn),
and u(x) = u(x̃, xn). The integral (4.7) is then∫ ∞

xn=−∞

∫
x̃∈Rn−1

(
f(x̃, xn)− f̃(xn)

)2

u(x̃, xn)dx̃dxn .

In the inner integral:

R(xn) =

∫
x̃∈Rn−1

(
f(x̃, xn)− f̃(xn)

)2

u(x̃, xn)dx̃ ,
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f̃(xn) is just a constant. We find the value of f̃(xn) that minimizes R(xn) by
minimizing the quantity∫

x̃∈Rn−1

(f(x̃, xn)− g)
2
u(x̃, xn)dx̃ =∫

f(x̃)2u(x̃, xn)dx̃+ 2g

∫
f(x̃)u(x̃, xn)dx̃+ g2

∫
u(x̃, xn)dx̃ .

The optimal g is given by the classical formula (4.5).

4.1.12 Modern conditional probability:

We already saw that the modern approach to conditional probability for G ⊂ F
is through conditional expectation. In its most general form, for every (or al-
most every) ω ∈ Ω, there should be a probability measure Pω on Ω so that the
mapping ω → Pω is measurable with respect to G. The measurability condition
probably means that for every event A ∈ F the function pA(ω) = Pω(A) is a G
measurable function of ω. In terms of these measures, the conditional expecta-
tion f̃ = E[f | G] would be f̃(ω) = Eω[f ]. Here Eω means the expected value
using the probability measure Pω. There are many such subscripted expecta-
tions coming.

A subtle point here is that the conditional probability measures are defined on
the original probability space, Ω. This forces the measures to “live” on tiny
(generally measure zero) subsets of Ω. For example, if Ω = Rn and G is gen-
erated by xn, then the conditional expectation value f̃(xn) is an average of f
(using density u) only over the hyperplane Xn = xn. Thus, the conditional
probability measures PX depend only on xn, leading us to write Pxn . Since
f̃(xn) =

∫
f(x)dPxn(x), and f̃(xn) depends only on values of f(x̃, xn) with the

last coordinate fixed, the measure dPxn is some kind of δ measure on that hy-
perplane. This point of view is useful in many advanced problems, but we will
not need it in this course (I sincerely hope).

4.1.13 Semimodern conditional probability:

Here is an intermediate “semimodern” version of conditional probability density.
We have Ω = Rn, and Ω̃ = Rn−1 with elements x̃ = (x1, . . . , xn−1). For each
xn, there will be a (conditional) probability density function ũxn . Saying that
ũ depends only on xn is the same as saying that the function x → ũxn is
measurable with respect to G. The conditional expectation formula (4.5) may
be written

E[f | G](xn) =

∫
Rn−1

f(x̃, xn)ũxn(x̃)dx̃ .

In other words, the classical u(x̃ | Xn = xn) of (4.6) is the same as the semi-
modern ũxn(x̃).
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4.2 Gaussian Random Variables

The central limit theorem (CLT) makes Gaussian random variables important.
A generalization of the CLT is Donsker’s “invariance principle” that gives Brow-
nian motion as a limit of random walk. In many ways Brownian motion is a
multivariate Gaussian random variable. We review multivariate normal random
variables and the corresponding linear algebra as a prelude to Brownian motion.

4.2.1 Gaussian random variables, scalar:

The one dimensional “standard normal”, or Gaussian, random variable is a
scalar with probability density

u(x) =
1√
2π
e−x

2/2 .

The normalization factor 1√
2π

makes
∫∞
−∞ u(x)dx = 0 (a famous fact). The

mean value is E[X] = 0 (the integrand xe−x
2/2 is antisymmetric about x = 0).

The variance is (using integration by parts)

E[X2] =
1√
2π

∫ ∞
−∞

x2e−x
2/2dx

=
1√
2π

∫ ∞
−∞

x
(
xe−x

2/2
)
dx

= − 1√
2π

∫ ∞
−∞

x

(
d

dx
e−x

2/2

)
dx

= − 1√
2π

(
xe−x

2/2
)∣∣∣∣∞
−∞

+
1√
2π

∫ ∞
−∞

e−x
2/2dx

= 0 + 1

Similar calculations give E[X4] = 3, E[X6] = 15, and so on. I will often write
Z for a standard normal random variable. A one dimensional Gaussian random
variable with mean E[X] = µ and variance var(X) = E[(X − µ)2] = σ2 has
density

u(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 .

It is often more convenient to think of Z as the random variable (like ω) and
write X = µ+σZ. We write X ∼ N (µ, σ2) to express the fact that X is normal
(Gaussian) with mean µ and variance σ2. The standard normal random variable
is Z ∼ N (0, 1)

4.2.2 Multivariate normal random variables:

The n × n matrix, H, is positive definite if x∗Hx > 0 for any n component
column vector x 6= 0. It is symmetric if H∗ = H. A symmetric matrix is
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positive definite if and only if all its eigenvalues are positive. Since the inverse
of a symmetric matrix is symmetric, the inverse of a symmetric positive definite
(SPD) matrix is also SPD. An n component random variable is a mean zero
multivariate normal if it has a probability density of the form

u(x) =
1

z
e−

1
2x
∗Hx ,

for some SPD matrix, H. We can get mean µ = (µ1, . . . , µn)∗ either by taking
X + µ where X has mean zero, or by using the density with x∗Hx replaced by
(x− µ)∗H(x− µ).

If X ∈ Rn is multivariate normal and if A is an m× n matrix with rank m,
then Y ∈ Rm given by Y = AX is also multivariate normal. Both the cases
m = n (same number of X and Y variables) and m < n occur.

4.2.3 Diagonalizing H:

Suppose the eigenvalues and eigenvectors of H are Hvj = λjvj . We can express
x ∈ Rn as a linear combination of the vj either in vector form, x =

∑n
j=1 yjvj ,

or in matrix form, x = V y, where V is the n × n matrix whose columns are
the vj and y = (y1, . . . , yn)∗. Since the eigenvectors of a symmetric matrix are
orthogonal to each other, we may normalize them so that v∗j vk = δjk, which
is the same as saying that V is an orthogonal matrix, V ∗V = I. In the y
variables, the “quadratic form” x∗Hx is diagonal, as we can see using the vector
or the matrix notation. With vectors, the trick is to use the two expressions
x =

∑n
j=1 yjvj and x =

∑n
k=1 ykvk, which are the same since j and k are just

summation variables. Then we can write

x∗Hx =

 n∑
j=1

yjvj

∗H ( n∑
k=1

ykvk

)

=
∑
jk

(
v∗jHvk

)
yjyk

=
∑
jk

λkv
∗
j vkyjyk

x∗Hx =
∑
k

λky
2
k . (4.8)

The matrix version of the eigenvector/eigenvalue relations is V ∗HV = Λ (Λ be-
ing the diagonal matrix of eigenvalues). With this we have x∗Hx = (V y)∗HV y =
y∗(V ∗HV )y = y∗Λy. A diagonal matrix in the quadratic form is equivalent to
having a sum involving only squares λky

2
k. All the λk will be positive if H is

positive definite. For future reference, also remember that det(H) =
∏n
k=1 λk.

4.2.4 Calculations using the multivariate normal density:

We use the y variables as new integration variables. The point is that if the
quadratic form is diagonal the multiple integral becomes a product of one di-
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mensional gaussian integrals that we can do. For example,∫
R2

e−
1
2 (λ1y

2
1+λ2y

2
2)dy1dy2 =

∫ ∞
y1=−∞

∫ ∞
y2=−∞

e−
1
2 (λ1y

2
1+λ2y

2
2)dy1dy2

=

∫ ∞
y1=−∞

e−λ1y
2
1/2dy1 ·

∫ ∞
y2=−∞

e−λ2y
2
2/2dy2

=
√

2π/λ1 ·
√

2π/λ2 .

Ordinarily we would need a Jacobian determinant representing
∣∣∣dxdy ∣∣∣, but here

the determinant is det(V ) = 1, for an orthogonal matrix. With this we can find
the normalization constant, z, by

1 =

∫
u(x)dx

=
1

z

∫
e−

1
2x
∗Hxdx

=
1

z

∫
e−

1
2y
∗Λydy

=
1

z

∫
exp(−1

2

n∑
k=1

λky
2
k))dy

=
1

z

∫ ( n∏
k=1

e−λky
2
k

)
dy

=
1

z

n∏
k=1

(∫ ∞
yk=−∞

e−λky
2
kdyk

)

=
1

z

n∏
k=1

√
2π/λk

1 =
1

z
· (2π)n/2√

det(H)
.

This gives a formula for z, and the final formula for the multivariate normal
density

u(x) =

√
detH

(2π)n/2
e−

1
2x
∗Hx . (4.9)

4.2.5 The covariance, by direct integration:

We can calculate the covariance matrix of the Xj . The jk element of E[XX∗] is
E[XjXk] = cov(Xj , Xk). The covariance matrix consisting of all these elements
is C = E[XX∗]. Note the conflict of notation with the constant C above. A
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direct way to evaluate C is to use the density (4.9):

C =

∫
Rn

xx∗u(x)dx

=

√
detH

(2π)n/2

∫
Rn

xx∗e−
1
2x
∗Hxdx .

Note that the integrand is an n × n matrix. Although each particular xx∗

has rank one, the average of all of them will be a nonsingular positive definite
matrix, as we will see. To work the integral, we use the x = V y change of
variables above. This gives

C =

√
detH

(2π)n/2

∫
Rn

(V y)(V y)∗e−
1
2y
∗Λydy .

We use (V y)(V y)∗ = V (yy∗)V ∗ and take the constant matrices V outside the
integral. This gives C as the product of three matrices, first V , then an integral
involving yy∗, then V ∗. So, to calculate C, we can calculate all the matrix
elements

Bjk =

√
detH

(2π)n/2

∫
Rn

yjy
∗
ke
− 1

2y
∗Λydy .

Clearly, if j 6= k, Bjk = 0, because the integrand is an odd (antisymmetric)
function, say, of yj . The diagonal elements Bkk may be found using the fact
that the integrand is a product:

Bkk =

√
detH

(2π)n/2

∏
j 6=k

(∫
yj

e−λjy
2
j/2dyj

)
·
∫
yk

y2
ke
−λky2

k/2dyk .

As before, λj factors (for j 6= k) integrate to
√

2π/λj . The λk factor integrates

to
√

2π/(λk)3/2. The λk factor differs from the others only by a factor 1/λk.
Most of these factors combine to cancel the normalization. All that is left is

Bkk =
1

λk
.

This shows that B = Λ−1, so

C = V Λ−1V ∗ .

Finally, since H = V ΛV ∗, we see that

C = H−1 . (4.10)

The covariance matrix is the inverse of the matrix defining the multivariate
normal.
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4.2.6 Linear functions of multivariate normals:

A fundamental fact about multivariate normals is that a linear transformation
of a multivariate normal is also multivariate normal, provided that the transfor-
mation is onto. Let A be an m× n matrix with m ≤ n. This A defines a linear
transformation y = Ax. The transformation is “onto” if, for every y ∈ Rm,
there is at least one x ∈ Rn with Ax = y. If n = m, the transformation is onto
if and only if A is invertible (det(A) 6= 0), and the only x is A−1y. If m < n, A
is onto if its m rows are linearly independent. In this case, the set of solutions
is a “hyperplane” of dimension n −m. Either way, the fact is that if X is an
n dimensional multivariate normal and Y = AX, then Y is an m dimensional
multivariate normal. Given this, we can completely determine the probability
density of Y by calculating its mean and covariance matrix. Writing µX and
µY for the means of X and Y respectively, we have

µY = E[Y ] = E[AX] = AE[X] = AµX .

Similarly, if E[Y ] = 0, we have

CY = E[Y Y ∗] = E[(AX)(AX)∗] = E[AXX∗A∗] = AE[XX∗]A∗ = ACXA
∗ .

The reader should verify that if CX is n× n, then this formula gives a CY that
is m×m. The reader should also be able to derive the formula for CY in terms
of CX without assuming that µY = 0. We will soon give the proof that linear
functions of Gaussians are Gaussian.

4.2.7 Uncorrelation and independence:

The inverse of a symmetric matrix is another symmetric matrix. Therefore,
CX is diagonal if and only if H is diagonal. If H is diagonal, the probability
density function given by (4.9) is a product of densities for the components.
We have already used that fact and will use it more below. For now, just note
that CX is diagonal if and only if the components of X are uncorrelated. Then
CX being diagonal implies that H is diagonal and the components of X are
independent. The fact that uncorrelated components of a multivariate normal
are actually independent firstly is a property only of Gaussians, and secondly
has curious consequences. For example, suppose Z1 and Z2 are independent
standard normals and X1 = Z1 + Z2 and X2 = Z1 − Z2, then X1 and X2,
being uncorrelated, are independent of each other. This may seem surprising
in view of that fact that increasing Z1 by 1/2 increases both X1 and X2 by
the same 1/2. If Z1 and Z2 were independent uniform random variables (PDF
= u(z) = 1 if 0 ≤ z ≤ 1, u(z) = 0 otherwise), then again X1 and X2 would
again be uncorrelated, but this time not independent (for example, the only way
to get X1 = 2 is to have both Z1 = 1 and Z2 = 1, which implies that X2 = 0.).

4.2.8 Application, generating correlated normals:

There are simple techniques for generating (more or less) independent standard
normal random variables. The Box Muller method being the most famous.
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Suppose we have a positive definite symmetric matrix, CX , and we want to
generate a multivariate normal with this covariance. One way to do this is to
use the Choleski factorization CX = LL∗, where L is an n× n lower triangular
matrix. Now define Z = (Z1, . . . , Zn) where the Zk are independent standard
normals. This Z has covariance CZ = I. Now define X = LZ. This X has
covariance CX = LIL∗ = LL∗, as desired. Actually, we do not necessarily need
the Choleski factorization; L does not have to be lower triangular. Another
possibility is to use the “symmetric square root” of CX . Let CX = V ΣV ∗,
where Σ is the diagonal symmetric matrix with eigenvalues of CX (Σ = Λ−1

where Λ is given above), and V is the orthogonal matrix if eigenvectors. We
can take A = V

√
ΣV ∗, where

√
Σ is the diagonal matrix. Usually the Choleski

factorization is easier to get than the symmetric square root.

4.2.9 Central Limit Theorem:

Let X be an n dimensional random variable with probability density u(x). Let
X(1), X(2), . . ., be a sequence of independent samples of X, that is, independent
random variables with the same density u. Statisticians call this iid (indepen-
dent, identically distributed). If we need to talk about the individual compo-

nents of X(k), we write X
(k)
j for component j of X(k). For example, suppose we

have a population of people. If we choose a person “at random” and record his
or her height (X1) and weight (X2), we get a two dimensional random variable.
If we measure 100 people, we get 100 samples, X(1), . . ., X(100), each consisting

of a height and weight pair. The weight of person 27 is X
(27)
2 . Let µ = E[X]

be the mean and C = E[(X − µ)(X − µ)∗] the covariance matrix. The Central
Limit Theorem (CLT) states that for large n, the random variable

R(n) =
1√
n

n∑
k=1

(X(k) − µ)

has a probability distribution close to the multivariate normal with mean zero
and covariance C. One interesting consequence is that if X1 and X2 are uncor-

related then an average of many independent samples will have R
(
1n) and R

(n)
2

nearly independent.

4.2.10 What the CLT says about Gaussians:

The Central Limit Theorem tells us that if we average a large number of in-
dependent samples from the same distribution, the distribution of the average
depends only on the mean and covariance of the starting distribution. It may
be surprising that many of the properties that we deduced from the formula
(4.9) may be found with almost no algebra simply knowing that the multivari-
ate normal is the limit of averages. For example, we showed (or didn’t show)
that if X is multivariate normal and Y = AX where the rows of A are linearly
independent, then Y is multivariate normal. This is a consequence of the aver-
aging property. If X is (approximately) the average of iid random variables Uk,
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then Y is the average of random variables Vk = AUk. Applying the CLT to the
averaging of the Vk shows that Y is also multivariate normal.

Now suppose U is a univariate random variable with iid samples Uk, and
E[Uk] = 0, E[U2

k = σ2], and E[U4
k ] = a4 < ∞ Define Xn = 1√

n

∑n
k=n Uk.

A calculation shows that E[X4
n] = 3σ4 + 1

na4. For large n, the fourth moment
of the average depends only on the second moment of the underlying distri-
bution. A multivariate and slightly more general version of this calculation
gives “Wick’s theorem”, an expression for the expected value of a product of
components of a multivariate normal in terms of covariances.
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Chapter 5

Lecture 5

5.1 Brownian Motion

Brownian motion is the simplest of the stochastic processes called diffusion
processes. It is helpful to see many of the properties of general diffusions appear
explicitly in Brownian motion. In fact, all the other diffusion processes may be
described in terms of Brownian motion. Furthermore, Brownian motion arises
as a limit or many discrete stochastic processes in much the same way that
Gaussian random variables appear as a limit of other random variables through
the central limit theorem. Finally, the solutions to many other mathematical
problems, particularly various common partial differential equations, may be
expressed in terms of Brownian motion. For all these reasons, Brownian motion
is a central object to study.

5.1.1 Path space:

I will call brownian motion paths W (t) or Wt. In other places people might use
Bt, bt, Z(t), Zt, etc. The probability space ω will be the space of continuous
functions of t for t ≥ 0 so that W0 = 0. Later, we might consider other
starting positions, but that will be explicitly stated when we get there. We might
consider finite time or infinite time. That is, we might consider functions Wt,
for 0 ≤ t ≤ T or for all t ≥ 0. The sigma−algebra will be the algebra generated
by all the “coordinate” functions X(W ) = Xt for various t values. Since this
is an infinite collection of functions, what we really mean is to consider first
finite collections, t1 < · · · < tn, and take the σ− algebra generated by all these.
This complex definition of F leads to lots of technicality in complete rigorous
discussions of Brownian motion. Also important are the σ−algebras, Ft with
information up to time t. These are generated by the coordinate functions for
t1 < · · · < tn ≤ t.
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5.1.2 Increment probabilities:

The probability measure for Brownian motion, called Wiener measure, is speci-
fied by giving the probabilities of generating events. These generating events are
events generated by finitely many coordinate functions. Let t0 < t1 < · · · < tn.
The Brownian motion increments (sometimes called “shocks” by finance peo-
ple) are Xk = Wtk+1

−Wtk . Wt is a Brownian motion if the increments form a
multivariate Gaussian, distinct increments are independent, E[Xk] = 0, and

var[Xk] = E[X2
k ] = E[(Wtk+1

−Wtk)2] = tk+1 − tk . (5.1)

If (5.1) holds for every n ≥ 2 and every set of times (increasing, of course), then
the probability measure is Wiener measure.

5.1.3 Consistency:

There is some technical mathematics between the claim of the above paragraph
and it’s proof. A first step might be to see that all the different probabilities for
different n and tk are consistent with each other. There is something real here;
if var(Xk) = (tk+1 − tk)2, the probabilities are inconsistent (see below).

Suppose m < n and we have two increasing sequences of times t1 < t2 < · · · < tn
and t̃n < · · · t̃m. Suppose that the t̃k are a subset of the tj . This means that
the random variables Wt̃k

are a subset of the random variables Wtj . Call the
joint probability density for the Wtj u(wt1 , . . . , wtn), and let ũ(wt̃1 , . . . , wt̃m)
be the density for the Wt̃k

. We should be able to get the probability density
ũ for the subset of the variables from the larger density u by integrating over
the variables not present. That is, ũ should be the marginal density for the t̃k
derived from the the density u.

For example, suppose n = 3, m = 2, t1 < t2 < t3 and t̃1 = t1 and t̃2 = t3.
That is, the t̃k leave out the middle t. From (5.1), we find that the incre-
ments X1 = Wt2 − Wt1 and X2 = Wt3 − Wt2 are jointly gaussian with zero
mean, correlation zero, and variance σ2

1 = t2 − t1 and σ2
2 = t3 − t2 respec-

tively. For the t̃k we get that the increment X̃1 = Wt3 −Wt1 is gaussian with
zero mean and variance σ̃2

1 = t3 − t1. On the other hand, X̃1 = X1 + X2

(check this from their definitions), so the distribution of the random variable
X̃1 is determined by those of X1 and X2. Are these two definitions of X̃1

consistent? Yes. The sum of independent normals X1 and X2 is normal with
variance σ2

1 + σ2
2 . This shows that leaving out a single intermediate time gives

consistent probability distributions. If we leave out times one at a time, we
get the overall consistency statement. You should check that if the variance of
Xk is not a linear function of tk+1 − tk, the distributions are not consistent.
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5.1.4 Rough paths, total variation:

The above picture shows 5 Brownian motion paths. They are random and differ
in gross features (some go up, others go down), but the fine scale structure of
the paths is the same. For one thing, each of the paths, and any part of any
path, has infinite “variation” (more technically, “total variation”). Consider
times T1 < T2, choose a large number, n, and divide the time interval [T1, T2]
into n−1 equal side small subintervals tk, tk+1, where tk = T1 +(k−1)∆t, with
∆t = (T2 − T1)/(n− 1). The quantity

V =

n−1∑
k=1

∣∣Wtk+1
−Wtk

∣∣ (5.2)

is the ∆t variation of W between T1 and T2. By the independent increments
property, the terms on the right side of (5.2) are independent. By (5.1), they
have the same distribution. We estimate the sum of n− 1 iid random variables
using the Central Limit Theorem. The expected value is

E[V ] = (n− 1) · E[|X1|]
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where X1 ∼ N (0,∆t). Therefore

E[|X1|] =
1

2π∆t

∫ ∞
x=−∞

|x| e−x
2/(2∆t)dx

= 2 · 1

2π∆t

∫ ∞
x=0

xe−x
2/(2∆t)dx

= C
√

∆t ,

where C =
√

2/π. Substituting the definition of ∆t, this shows that E[V ] =
const

√
n− 1, with const = (2(T2 − T1)/π)1/2. As you take more and more

intervals (n→∞), the total movement of W between T1 and T2 goes to infinity.

By contrast, suppose Ut is a differentiable function of time. Then

|Utk+1 − Utk | ≈
∣∣∣∣dUtdt

∣∣∣∣ (tk+1 − tk) ,

so ∑
k

|Utk+1 − Utk | →
∫ T2

T1

∣∣∣∣dUdt
∣∣∣∣ dt <∞ as n→∞.

The variation of a differentiable function has a limit, the “total variation” as
the partition tk gets finer. For Brownian motion, the finer you look, the more
variation you see. Brownian motion paths are not differentiable in the ordinary
sense of calculus. The Ito calculus is called for instead.

5.1.5 Dynamic trading:

The infinite total variation of Brownian motion has a consequence for dynamic
trading strategies. Some of the simplest dynamic trading strategies, Black-
Scholes hedging, and Merton half stock/half cash trading, call for trades that
are proportional to the change in the stock price. If the stock price is a diffusion
process and there are transaction costs proportional to the size of the trade, then
the total transaction costs will either be infinite (in the idealized continuous
trading limit) or very large (if we trade as often as possible). It turns out that
dynamic trading strategies that take trading costs into account can approach
the idealized zero cost strategies when trading costs are small. Next term you
will learn how this is done.

5.1.6 Quadratic variation:

The quadratic variation for the partition tk as above is

Q(T1, T2, n) =

n−1∑
k=1

(
Wtk+1

−Wtk

)2
. (5.3)

This sum takes the squares of the increments, Xk = Wtk+1
−Wtk rather than

the absolute values. For continuous paths, small ∆t = (T2− T1)/(n− 1) should
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imply small Xk. Therefore the quadratic variation should be smaller than the
total variation. In fact, for a differentiable function, Q → 0 as n → ∞. For
Brownian motion, the quadratic variation terms are just small enough for the
sum not to go to zero or infinity as n → ∞. In fact, the basic formula (5.1)
implies that

E[Q(T2, T1, n)] =
∑
k

(tk+1 − tk) = T2 − T1 , (5.4)

for any partition. Since the sum in (5.3) has a large number of iid terms for
large n, the Central Limit Theorem suggests that the sum should be close to its
expected value. Thus, we have the quadratic variation as the limit

Q(T1, T2) = lim
n→∞

Q(T1, T2, n) = T2 − T1 .

For other diffusion processes, the quadratic variation limit exists but it’s value
depends on the path. The quadratic variation is an important ingredient in the
Ito calculus.

5.1.7 Trading volatility:

The quadratic variation of a stock price (or a similar quantity) is called it’s
“realized volatility”. The fact that it is possible to buy and sell realized volatility
says that the (geometric) Brownian motion model of stock price movement is not
completely realistic. That model predicts that realized volatility is a constant,
which is nothing to bet on.

5.1.8 Almost sure convergence:

An event, A, is called “almost sure” if P (A) = 1. For example, a probabilist
would say that the quadratic variation formula (5.4) is true almost surely and
might write

Qn → Q as n→∞ a.s. .

It might seem that this should be called “sure” because we have no doubt that
it will happen. The “almost” refers to the fact that (5.4) is might not be true
for every W ∈ Ω. There are paths, continuous functions Wt, so that the limit
is infinite and others so that the limit is zero (e.g. differentiable paths). In
continuous probability, there are many events that are impossible because they
have probability zero, not because the do not exist.

5.1.9 Markov property:

Brownian motion has the Markov property. This is a consequence of the inde-
pendent increments property. For any t, we have the σ− algebras Ft generated
by the Ws for 0 < s ≤ t (representing past and present), Gt generated by
Wt (representing the present), and Ht (representing the future). The Markov
property is that for any function F ∈ Ht, E[F | Gt] = E[F | Ft]. A function
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measurable with respect to Ht depends on the values Ws for s ≥ t. But Ws

for s ≥ t is determined by Wt and increments X for intervals (tk, tk+1) that are
measurable in Ht and independent of all increments that are Ft measurable.
blabla.

5.1.10 Conditional probabilities for intermediate times:

5.1.11 Brownian bridge construction:

5.1.12 Continuous time stochastic process:

The general abstract definition of a continuous time stochastic process is just
a probability space, Ω, and, for each t > 0, a σ−algebra Ft. These algebras
should be nested (corresponding to increase of information) Ft1 ⊆ Ft2 if t1 ≤ t2.
There should also be a family of random variables Yt(ω), with Yt measurable in
Ft (i.e. having a value known at time t). This explains why probabilists often
write Wt instead of W (t). For each t, we think of Wt as a function of ω with
t simply being a parameter. The Brownian motion has the property that, for
every ω (not almost every), the map t → Wt(ω) is a continuous function of
t. Other stochastic processes, such as the Poisson jump process, do not have
continuous sample paths.

5.1.13 Continuous time martingales:

A stochastic process Mt (with Ω and the Ft) is a martingale if E[Ms | Ft] = Mt

for s > t. Brownian motion forms the first example of a continuous time martin-
gale. Another famous martingale related to Brownian motion is Mt = W 2

t − t
(the reader should check this). For any random variable, Y , the conditional
expectations Yt = E[Y | Ft] form a martingale. The Ito calculus is based on the
idea that a stochastic integral with respect to W should produce a martingale.

5.2 Brownian motion and the heat equation

We saw for Markov chains that actual calculations of probabilities and expec-
tation values often make use of forward and backward equations, which we
call evolution equations, for probabilities (here, probability densities) and con-
ditional probabilities. For Brownian motion, both the forward and backward
equations are “the” heat equation, though the backward equation is often called
the “backward heat equation”. We will also find heat equations with bound-
ary conditions that allow us to compute hitting time probability densities and
expectations that involve hitting times.

5.2.1 Forward equation for the probability density:

For now we will write Xt for Brownian motion. A Brownian motion starting at
X0 = 0 will have probability density at time t that is N (0, t). We denote this
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density by

g(x, t) =
1√
2π
e−x

2/2t . (5.5)

Directly calculating partial derivatives, we can verify that

∂tg =
1

2
∂2
xg. (5.6)

This g will play a role below as the ”transition density” for Brownian motion,
which is more general than just the density for Xt. For example, we could also
consider a more general initial density X0 ∼ u0(x), and independent Gaussian
increments as before. (We write Y ∼ v(y) to indicate that v is the probability
density for the random variable Y , and sometimes also Y1 ∼ Y2 to mean that
Y1 and Y2 have the same density.) Then the increment Xt −X0 will be N (0, t)
and independent of X0. That is, Xt is the sum of independent random variables
X0, with density u0, and Xt −X0, with density g(·, t). Therefore, the density
for Xt is

u(x, t) =

∫ ∞
y=−∞

g(x− y, t)u0(y)dy , (5.7)

Again, direct calculation using (5.5) shows taht u satisfies

∂tu =
1

2
∂2
xu . (5.8)

This is the “heat equation”, also called “diffusion equation”. The equation is
used in two ways. First, we can compute probabilities by finding the solution
to the partial differential equation. Also, we may be able to find solutions to
the partial differential equation if there is an independent way to calculate the
probability density.

5.2.2 Heat equation via Taylor series:

There is another way to see that the Xt probability density u satisfies the heat
equation (5.8) that proceeds directly from (5.5). This technique has the advan-
tage that we do not have to know the equation in advance. We suppose only
that u is a smooth function of x and t and derive the equation by Taylor series
calculations. The idea applies in more general situations. It is one approach to
the Ito calculus.

The Brownian motion Xt ∼ u(x, t) has the property that its increment in a
small time interval ∆t is Y = Xt+∆t −Xt ∼ N (0,∆t), independent of Xt. As
above, this means that Xt+∆t = Xt + Y has probability density u(x, t + ∆t)
that satisfies

u(x, t+ ∆t) =

∫
g(x− y,∆t)u(y, t)dy , (5.9)

where g is still given by (5.5). Now, for small ∆t, the integrand on the right
side of (5.9) is significantly different from zero only when x − y is small (not
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much larger than the order of
√

∆t). If u is a smooth function of x, most of the
integral will be determined by values of u for y near x. This motivates us to
approximate u(y) as a Taylor series about x:

u(y) = u(x) + ∂xu(x) · (y − x) +
1

2
∂2
xu(x) · (y − x)2 +O(|x− y|3); .

We integrate the right side of (5.9) with this expansion, remembering that∫
g(x − y,∆t)(x − y)2dy = ∆t, that being the variance of the ∆t increment

in X. The result is (You can verify that
∫
g(y,∆t) |y|3 dy = O(∆t3/2.):∫

g(x− y,∆t)u(y, t)dy = u(x, t) + 0 + ∆t
1

2
∂2
xu(x, t) +O(∆t3/2) .

Of course, we also have

u(x, t∆t) = u(x, t) + ∆t∂tu(x, t) +O(∆t2) .

Using these series for the left and right sides of (5.9) gives

u(x, t) + ∆t∂tu(x, t) +O(∆t2) = u(x, t) + ∆t
1

2
∂2
xu(x, t) +O(∆t3/2) .

We cancel the u(x, t) then divide by ∆t and let ∆t → 0, and we are left with
(5.8).

5.2.3 The initial value problem:

The heat equation (5.8) is the Brownian motion analogue of the forward equa-
tion for Markov chains. It is often called the forward equation, often to distin-
guish it from the backward equation discussed below. If we know the time 0
density u(x, 0) = u0(x) and the evolution equation (5.8), the values of u(x, t) are
completely and uniquely determined (ignoring mathematical technicalities that
would be unlikely to trouble an applied person). The task of finding u(x, t) for
t > 0 from u0(x) and (5.8) is called the “initial value problem”, with u0(x) being
the “initial value” (or “values”??). This initial value problem is “well posed”,
which means that the solution, u(x, t), exists and depends continuously on the
initial data, u0. If you want a proof that the solution exists, just use the integral
formula for the solution (5.7). Given u0, the integral (5.7) exists, satisfies the
heat equation, and is a continuous function of u0. The proof that u is unique is
more technical (partly because it rests on more technical assumptions).

5.2.4 Ill posed problems:

In some situations, the problem of finding a function u from a partial differential
equation and other data may be “ill posed”, useless for practical purposes. A
problem is ill posed if it is not well posed. This means either that the solution
does not exist, or that it does not depend continuously on the data, or that it is
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not unique. For example, if I try to find u(x, t) for positive t knowing only u0(x)
for x > 0, I must fail. A mathematician would say that the solution, while it
exists, is not unique, there being many different ways to give u0(x) for x > 0,
each leading to a different u. A more subtle situation arises, for example, if we
give u(x, T ) for all x and wish to determine u(x, t) for 0 ≤ t < T . For example,
if u(x, T ) = 1[0,1](x), there is no solution (trust me). Even if there is a solution,
for example given by (5.7), is does not depend continuously on the values of
u(x, T ) for T > t (trust me).

The heat equation (5.8) relates values of u at one time to values at another
time. However, it is “well posed” only for determining u at future times from u
at earlier times. This “forward equation” is well posed only for moving forward
in time.

5.2.5 Conditional expectations:

We saw already for Markov chains that certain conditional expected values can
be calculated by working backwards in time with the backward equation. The
Brownian motion version of this uses the conditional expectation

f(x, t) = E[V (XT ) | Xt = x] . (5.10)

The “modern” formulation of this gives ft = E[V (Xt) | Ft], which is, as has
been repeated, a function of Xt = x only. Of course, these definitions mean
the same thing. The definition is also sometimes written as f(x, t) = Ex,t[Xt].
This is in the spirit of writing Eα[] for expectation with respect to the given
probability measure Pα. Here, the probability measure Px,t is Brownian motion
starting from x at time t, which is defined by the densities of increments for
times larger than t as before.

5.2.6 Backward equation by direct verification:

The expectation (5.10) depends on the increment XT −Xt, which is N (0, T − t)
and independent of Xt. Thus, the conditional density of XT given that Xt = x
is (as a function of y) g(y − x, T − t). Writing the expectation f(x, t) as an
integral, we get

f(x, t) =

∫ ∞
−∞

g(x− y, T − t)V (y)dy . (5.11)

Since this depends on x and t only through g, we can again verify through
explicit calculation that

∂tf +
1

2
∂2
xf = 0 . (5.12)

Note that the sign of ∂t here is not what it was in (5.8), which is because we
are calculating ∂tg(T − t) rather than ∂tg(t). This (5.12) is the “backward
equation”.
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5.2.7 Backward equation by Taylor series:

As with the forward equation (5.8), we can find the backward equation by Taylor
series expansions. Indeed, since Ft ⊂ Ft+∆t, we have, in “modern” notation,

ft = E[V (XT ) | Ft] = E[E[V (XT ) | Ft+∆t] | Ft] = E[f(Xt∆t | Ft] .

Using the probability density for the increment Xt+∆t−Xt, this gives the inte-
gral relation

ft(x, t) =

∫ ∞
y=−∞

g(x− y,∆t)ft+∆t(y)dy . (5.13)

Using Taylor series on the right and left (in different ways as above) again leads
to (5.12).

5.2.8 The final value problem:

We get a well posed problem by giving the partial differential equation (5.12)
together with the “final values” f(x, T ) = V (x) (The definition (5.10) makes
this obvious.). The “backwards heat equation enables us to find values of f at
early times from given values at later times. The initial value problem, finding
ft with t > 0 from f0 is not well posed. Although there may be occasional
solutions, it is not a useful way to find the general solution, either because the
general solution does not exist or because the solution that happens to exist
does not depend in a continuous way on the values f0.

5.2.9 Duality:

You can check directly the duality property that
∫
f(x, t)u(x, t)dx is indepen-

dent of t. As for the Markov chain case, this is a consistency relation between
the forward and backward evolution equations that makes one “dual” to the
other. Also as for Markov chains, the integral is an expression of the law of
total probability, integrating the expected payout starting at x at time t multi-
plied by the probability density for being at x at time t. This is E[V (XT )], and
is thus independent of t.

5.2.10 The smoothing property, regularity:

Solutions of the forward or backward heat equation become smooth functions
of x and t even if the initial data (for the forward equation) or final data (for
the backward equation) are not smooth. For u, this is clear from the integral
formula (5.7). If we differentiate with respect to x, this derivative passes under
the integral and onto the g factor. This applies also to x or t derivatives of
any order, since the corresponding derivatives of g are still smooth integrable
functions of x. The same can be said for f using (5.11); as long as t < T ,
any derivatives of f with respect to x and/or t are bounded. A function that
has all partial derivatives of any order bounded is called “smooth”. (Warning,
this term is not used consistently. Some people say “smooth” to mean, for
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example, merely having derivatives up to second order bounded.) Solutions of
more general forward and backward equations often, but not always, have the
smoothing property.

5.2.11 Rate of smoothing:

Suppose the payout (and final value) function, V (x), is a discontinuous function
such as V (x) = 1x>0(x) (a “digital” option in finance). For t close to T , f(x, t)
will be a differentiable function of x, but the derivative will be very large in
some places. In fact,

max
x
|∂xf(x, t)| ∼ 1√

T − t
.

Higher derivatives of f “explode” faster as t approaches T . If V (x) = x+ (x+

being the “positive part” of x, either x or 0 depending on which is larger), then
the ∂xf is bounded as t approaches T , but the curvature “blows up”. The fact
that derivatives of f blow up at t approaches T makes numerical solution of the
backward equation difficult and inaccurate.

5.2.12 Diffusion:

It sometimes helps the intuition to think of particles diffusing through some
medium, ink particles diffusing through still water, for example. Then u(x, t)
can represent the density of particles about x at time t. If ink has been diffusing
through water for some time, there might be dark regions with a high density
of particles (large u) and lighter regions with smaller u. This helps us interpret,
for example, solutions of the heat equation (5.8) without the requirement that∫
u(x, t)dx = 1. For ink in water, it is a reasonable approximation to think

of each particle performing it’s own Brownian motion independent of all the
others. If the density of particles were too high (e.g. all particles and no water),
we would have to adjust the model. A physical argument that tiny particles in
water should undergo Brownian motion, and that their density should satisfy
the heat equation, was given by the German physicist Albert Einstein, and was
the basis of his Nobel Prize (relativity and quantum mechanics seeming too
uncertain at the time).

5.2.13 Heat:

Heat also can diffuse through a medium, as happens when we put a thick metal
pan over a flame and wait for the other side to heat up. We can think of
u(x, t) as representing the temperature in a metal at location x at time t. This
helps us interpret solutions of the heat equation (5.8) when u is not necessarily
positive. In particular, it helps us imagine the “cancellation” that can occur
when regions of positive and negative u are close to each other. Heat flows
from the high temperature regions to low or negative temperature regions to
create a more uniform equilibrium temperature. A physical argument that heat
(temperature) flowing through a metal should satisfy the heat equation was
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given by the French mathematical physicist, friend of Napoleon, and founder of
Ecole Polytechnique, Joseph Fourier.

5.2.14 Hitting times:

A stopping time, τ , is any time that depends on the Brownian motion path X
so that the event τ ≤ t is measurable with respect to Ft. This is the same as
saying that for each t there is some process that has as input the values Xs for
0 ≤ s ≤ t and as output a decision τ ≤ t or τ > t. One kind of stopping time is
a hitting time:

τa = min (t | Xt = a) .

More generally (particularly for Brownian motion in more than one dimension)
if A is a closed set, we may consider τA = min(t | Xt ∈ A). It is useful to define
a Brownian motion that stops at time τ : X̃t = Xt if t ≤ τ , X̃t = Xτ if t ≥ τ .

5.2.15 Probabilities for stopped Brownian motion:

Suppose Xt is Brownian motion starting at X0 = 1 and X̃ is the Brownian
motion stopped at time τ0, the first time Xt = 0. The probability measure,
Pt, for X̃t may be written as the sum of two terms, Pt = P st + P act . (Since X̃t

is a single number, the probability space is Ω = R, and the σ−algebra is the
Borel algebra.) The “singular” part, P st , corresponds to the paths that have
been stopped. If p(t) is the probability that τ ≤ t, then P st = p(t)δ(x), which
means that for any Borel set, A ⊆ R, P st (A) = p(t) if 0 ∈ A and P st (A) = 0
if 0 /∈ A. This δ is called the “delta function” or “delta mass”; it puts weight
one on the point zero and no weight anywhere else. Probabilists sometimes
write δx0

for the measure that puts weight one on the point x0. Physicists write
δx0

(x) = ‘delta(x = x0). The “absolutely continuous” part, P act , is given by a
density, u(x, t). This means that P act (A) =

∫
A
u(x, t)dx. Because

∫
R
u(x, t)dx =

1− p(t) < 1, u, while being a density, is not a probability density.

This decomposition of a measure (P ) as a sum of a singular part and absolutely
continuous part is a special case of the Radon Nikodym theorem. We will see
the same idea in other contexts later.

5.2.16 Forward equation for u:

The density for the absolutely continuous part, u(x, t), is the density for paths
that have not touched X = a. In the diffusion interpretation, think of a tiny
ink particle diffusing as before but being absorbed if it ever touches a. It is
natural to expect that when x 6= a, the density satisfies the heat equation (5.8).
u “knows about” the boundary condition because of the “boundary condition”
u(a, t) = 0. This says that the density of particles approaches zero near the
absorbing boundary. By the end of the course, we will have several ways to
prove this. For now, think of a diffusing particle, a Brownian motion path, as
being hyperactive; it moves so fast that it has already visited a neighborhood
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of its current location. In particular, if Xt is close to a, then very likely Xs = a
for some s < t. Only a small minority of the particles at x near a, with small
density u(x, t)→ 0 as x→ a have not touched a.

5.2.17 Probability flux:

Suppose a Brownian motion starts at a random point X0 > 0 with probability
density u0(x) and we take the absorbing boundary at a = 0. Clearly, u(x, t) = 0
for x < 0 because a particle cannot cross from positive to negative without
crossing zero, the Brownian motion paths being continuous. The probability of
not being absorbed before time t is given by

1− p(t) =

∫
x>0

u(x, t)dx . (5.14)

The rate of absorbtion of particles, the rate of decrease of probability, may be
calculated by using the heat equation and the boundary condition. Differenti-
ating (5.14) with respect to t and using the heat equation for the right side then
integrating gives

−ṗ(t) =

∫
x>0

∂tu(x, t)dx

=

∫
x>0

1

2
∂2
xu(x, t)dx

ṗ(t) =
1

2
∂xu(x, 0) . (5.15)

Note that both sides of (5.15) are positive. The left side because P (τ ≤ t) is
an increasing function of t, the right side because u(0, t) = 0 and u(x, t) > 0 for
x > 0. The identity (5.15) leads us to interpret the left side as the probability
“flux” (or “density flux if we are thinking of diffusing particles). The rate
at which probability flows (or particles flow) across a fixed point (x = 0) is
proportional to the derivative (the gradient) at that point. In the heat flow
interpretation this says that the rate of heat flow across a point is proportional
to the temperature gradient. This natural idea is called Fick’s law (or possibly
“Fourier’s law”).

5.2.18 Images and Reflections:

We want a function u(x, t) that satisfies the heat equation when x > 0, the
boundary condition u(0, t) = 0, and goes to δx0

as t ↓ 0. The “method of
images” is a trick for doing this. We think of δx0 as a unit “charge” (in the

electrical, not financial sense) at x0 and g(x − x0, t) = 1√
2π
e−(x−x0)2/2t as the

response to this charge, if there is no absorbing boundary. For example, think
of putting a unit drop of ink at x0 and watching it spread along the x axis
in a “bell shaped” (i.e. gaussian) density distribution. Now think of adding a
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negative “image charge” at −x0 so that u0(x) = δx0−δ−x0 and correspondingly

u(x, t) =
1√
2πt

(
e−(x−x0)/2t − e−(x+x0)/2t

)
. (5.16)

This function satisfies the heat equation everywhere, and in particular for x > 0.
It also satisfies the boundary condition u(0, t) = 0. Also, it has the same initial
data as g, as long as x > 0. Therefore, as long as x > 0, the u given by (5.16)
represents the density of unabsorbed particles in a Brownian motion with ab-
sorption at x = 0. You might want to consider the image charge contribution
in (5.16), 1√

2π
e−(x−x0)2/2t, as “red ink” (the ink that represents negative quan-

tities) that also diffuses along the x axis. To get the total density, we subtract
the red ink density from the black ink density. For x = 0, the red and black
densities are the same because the distance to the sources at ±x0 are the same.
When x > 0 the black density is higher so we get a positive u. We can think of
the image point, −x0, as the reflection of the original source point through the
barrier x = 0.

5.2.19 The reflection principle:

The explicit formula (5.16) allows us to evaluate p(t), the probability of touching
x = 0 by time t starting at X0 = x0. This is

p(t) = 1−
∫
x>0

u(x, t)dx =

∫
x>0

1√
2πt

(
e−(x−x0)/2t − e−(x+x0)/2t

)
dx .

Because
∫∞
−∞

1√
2πt

e−(x−x0)/2tdx = 1, we may write

p(t) =

∫ 0

−∞

1√
2πt

e−(x−x0)/2tdx+

∫ ∞
0

1√
2πt

e−(x+x0)/2tdx .

Of course, the two terms on the right are the same! Therefore

p(t) = 2

∫ 0

−∞

1√
2πt

e−(x−x0)/2tdx .

This formula is a particular case the Kolmogorov reflection principle. It says
that the probability that Xs < 0 for some s ≤ t is (the left side) is exactly
twice the probability that Xt < 0 (the integral on the right). Clearly some of
the particles that cross to the negative side at times s < t will cross back, while
others will not. This formula says that exactly half the particles that touch for
some s ≤ t x = 0 have Xt > 0. Kolmogorov gave a proof of this based on the
Markov property and the symmetry of Brownian motion. Since Xτ = 0 and
the increments of X for s > τ are independent of the increments for s < τ , and
since the increments are symmetric Gaussian random variables, they have the
same chance to be positive Xt > 0 as negative Xt < 0.
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Chapter 6

Lecture 6

6.1 Integration with respect to Brownian Mo-
tion

While integrals of functions of Brownian motion paths are not hard to define,
integrals with respect to Brownian motion do give trouble. In fact, there is
some ambiguity about what the integral should be. The Ito integral is really
just a convention to choose one of the several possibilities. The Ito convention
is that the “stochastic integral” with respect to Brownian motion should be a
martingale.

Many financial models take the form of stochastic differential equations (SDE).
The definition of the solution of an SDE has the same ambiguity as the stochastic
integral with respect to Brownian motion. We again choose the Ito convention
that the solution as far as possible should be a martingale. In fact, the solution
of an Ito SDE is defined in terms of the Ito integral.

6.1.1 Integrals involving a function of t only:

The stochastic integral with respect to Brownian motion is an integral in which
dXt (whatever that means) plays the role of dt in the Riemann integral. The
simplest case involves just a function of t:

Yg =

∫ T

0

g(t)dXt . (6.1)

This integral is defined in somewhat the same way the Riemann integral is
defined. We choose n and ∆t = T/n and take

Y (n)
g =

n−1∑
k=0

g(tk)∆Xk , (6.2)
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where ∆Xk = Xtk+1
− Xtk , and tk = k∆t. Since Y

(n)
g is a sum of gaussian

random variables, it is also gaussian. Clearly E[Y
(n)
g ] = 0. We will understand

the limit as ∆t → 0 (including whether it exists) if we calculate the limit of

var(Y
(n)
g = E[Y

(n)2
g ]. Since the ∆Xk are independent normals with mean zero

and variance ∆t, the variance of the sum is

var(Y (n)
g ) =

n−1∑
k=0

g(tk)2∆t .

The right side is the standard Riemann approximation to the integral
∫ T

0
g(t)2dt,

so letting ∆t→ 0 gives

E[Y 2
g ] = var(Yg) =

∫ T

0

g(t)2dt . (6.3)

This may not have seemed so subtle, and it was not. Every reasonable definition
of (6.1) gives the same answer.

6.1.2 Different kinds of convergence:

In the abstract setting we have a probability space, Ω, and a family of random
variables Yn(ω). We want to take the limit as n → ∞. The limit above is
the limit “in distribution”. The probability density for Yn converges to the
probability density of a random variable Y . The cental limit theorem is of
this kind: the probability density converges to a gaussian. Another kind of
convergence as “pointwise”, asking that, for each ω (or almost every ω) the
limit limn→∞ Yn(ω) = Y (ω) should exist. The difference between these notions
is that one gives an actual (function of a) random variable, Y (ω), while the
other just gives a probability density without necessarily saying which Y goes
with a particular ω. Proving convergence in distribution for gaussian random
variables is easy, just calculate the mean and variance. Note that this does not
depend on the joint distribution of Yn and Yn+1. Proving pointwise convergence
requires you to understand the differences Yn+1 − Yn, which do depend on the
joint distributions.

6.1.3 Proving pointwise convergence:

The abstract setting has a probability space, Ω, with a probability measure, and
a sequence of random variables, Xn(ω). The Xn could be just numbers (what we
usually call random variables), or vectors (vector values random variables), or
even functions of another variable (say, t). In any of these cases, we have a norm,
‖X‖. For the case of a number, we just use the absolute value, |X|. For vectors,
we can use any vector norm. For functions, we can also use any norm, such
as the “sup” norm, ‖X(ω)‖ = max0≤t≤T |X(ω, t)|, or the L2 norm, ‖X‖2 =∫

0≤t≤T X(ω, t)2dt. A theorem in analysis says that the limit limn→∞Xn(ω)
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exists if

S(ω) =

∞∑
n=1

‖Xn+1(ω)−Xn(ω)‖ <∞ . (6.4)

This is easy to understand. The limit exists if and only if the sum, X1(ω) +∑
nXn+1(ω) − Xn(ω), converges. The condition (6.4) just says that this sum

converges absolutely. It is possible that the limit exists even though S is infinite.
For example (forgetting ω) if Xn = (−1)n/n.

The limit will exist for (almost) every ω if S(ω) <∞ for (almost) every ω. We
know that S < ∞ almost surely if E[S] =

∫
S(ω)dP (ω) < ∞. The expected

value criterion is useful because we might be able to calculate the expected
value, particularly in a Stochastic Calculus class that is devoted mostly to such
calculations. Of course, it is possible that S < ∞ almost surely even though
E[S] = ∞. For example, suppose S = 1/Z2 where Z is a standard normal
S ∼ N (0, 1) (OK, not likely for (6.4), but that does not change this point). In
jargon, we would say these criteria are not “sharp”; it is possible to fail these
tests and still converge. As far as I can tell, a sharp criterion would be much
more complicated, and unnecessary here. From (6.4), the criterion E[S] < ∞
may be stated:

∞∑
n=1

E
[
‖Xn+1 −Xn‖

]
<∞ . (6.5)

We continue our succession of convenient but not sharp criteria. It is often easier
to calculate E[Y 2] than E[|Y ‖]. Fortunately, there is the “Cauchy Schwartz”
inequality: E[|Y |] < E[Y 2]1/2 (proof left to the reader). If we define (and hope
to calculate)

s2
n = E

[
‖Xn+1 −Xn‖2

]
,

then E
[
‖Xn+1 −Xn‖

]
< sn, so (6.5) holds if

∞∑
n=1

sn <∞ . (6.6)

6.1.4 The integral as a function of X:

We apply the above criteria to showing that the limit (6.2) exists for (almost)
any Brownian motion path, X. Pointwise convergence does two things for us.
First, it shows that Yg is a function of X, i.e., a random variable defined on the
probability space of Brownian motion paths. Second, it shows that shows that if
we use the approximation (6.2) on the computer, we will get an approximation
to the right Yg(X), not just a random variable with (approximately) the right
distribution. Whether that is important is a subject of heated debate, with me

heatedly on one of the sides. We will see that it is much easier to compare Y
(n)
g

with Y
(2n)
g than with Y

(n+1)
g . To translate from our situation to the abstract,
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the abstract Xn will be our Y
(2L)
g , the abstract n our L, and the abstract ω our

X. That is, we seek to show that the limit

lim
L→∞

Y (2L)
g (X) = Yg(X)

exists for (almost) every Brownian motion path, X. We will do this by calcu-

lating (bounding would be a more apt term) E[(Y
(2n)
g − Y (n)

g )2] with n = 2L.

6.1.5 Comparing the ∆t and ∆t/2 approximations:

We will fix g and stop writing it. We have Y (n) based on ∆t = T/n and Y (2n)

based on ∆t/2 = T/(2n). We take tk = k∆t, which is appropriate for Y (n).
The contribution to Y (n) from the interval (tk, tk+1) is g(tk)(Xtk+1

−Xtk). For

Y (2n), the interval (tk, tk+1) is divided into two subintervals (tk, tk+1/2) and
(tk+1/2, tk+1), using the notation tk+1/2 = tk + ∆t/2 = (k + 1/2)∆t. The the

contribution to Y (2n) from these two intervals added is

g(tk)(Xtk+1/2
−Xtk) + g(tk+1/2)(Xtk+1

−Xtk+1/2
) .

Define ∆Yk to be the difference between the single Y (n) contribution and the
two Y (2n) contributions from the interval (tk, tk+1), so that Y (2n) − Y (n) =∑n−1
k=0 ∆Yk. A calculation gives

∆Yk = (g(tk+1)− g(tk+1/2))(Xtk+1
−Xtk+1/2

) .

Only the X values are random, and increments Xtk+1
− Xtk+1/2

from distinct
intervals are independent. Therefore

E
[
(Y (2n) − Y (n))2

]
=

n−1∑
k=0

E[∆Y 2
k ] =

n−1∑
k=0

∆g2
k∆t/2 ,

where we have used the notation ∆gk = g(tk+1) − g(tk+1/2) and the fact that
E[(Xtk+1

−Xtk+1/2
)2] = ∆t/2.

Now suppose that |g′(t)| ≤ r for all t. Then ∆gk ≤ r∆t
2 (an interval of length

∆t
2 ) so

E
[
(Y (2n) − Y (n))2

]
≤ nr

2∆t2

4

∆t

2
.

Simplifying using the relationship n∆t = T gives

E
[
(Y (2n) − Y (n))2

]
≤ T r

2∆t2

8
.

Finally, take n to be of the form 2L, write YL = Y (2L), and see that we have
shown s2

L ≤ Const ·∆t2, so sL ≤ Const · 2−L, and the criterion (6.6) is easily
satisfied.
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6.1.6 Unanswered theoretical questions:

Here are some questions that would be taken up in a more theoretical course and
their answers, without proof. Q1: This defines Yg only for functions g(t) that are

differentiable. What about other functions? A1: Because E[Y 2
g ] =

∫ T
0
g(t)2dt,

we can “extend” the mapping g 7→ Yg to any g with
∫
g2 <∞, as we do for the

Fourier transform. Q2: What happens if we let n→∞ but not by powers of 2?
A2: This can be done in at least two ways, either using a more sophisticated
argument and higher than second order moments, or by using a uniqueness
theorem for the limit. Even without this, we met our primary goal of showing
that Yg is a well defined function of X.

6.1.7 White noise:

White noise is something of an idealization, like the δ−function. Imagine a
function, W (t) that is gaussian with mean zero and has W (t) independent of
W (s) for t 6= s. Also imagine that the strength of the noise is independent of
time. This is a common model for fluctuations. For example, in modeling phone
calls, we may think that the rate of new calls being initiated fluctuates from
its mean but that fluctuations at different times are independent. Suppose we

try to integrate white noise over intervals of time: Y[a,b] =
∫ b
a
W (t)dt. We can

determine how the variance σ2
[a,b] = E[Y 2

[a,b]] depends on the interval by noting
that Y variables for disjoint intervals should be independent. In particular, if
a < b < c we have Y[a,c] = Y[a,b] + Y[b,c], so σ2

[a,c] = σ2
[a,b] + σ2

[b,c]. The only

this can happen, and have, for any offset, d, σ2
[a,b] = σ2

[a+d,b+d] (homogeneous in

time) is for σ2
[a,b] = Const ·(b−a). The “standard” white noise has σ2

[a,b] = b−a.

6.1.8 White noise is not a function:

White noise is too rough to be a function, even a random function, in the usual
sense. To see this, consider an interval (0, ε). Since

∫ ε
0
W (t)dt has variance ε,

it’s standard deviation, which is the order of magnitude of a typical Y[0,ε], is√
ε. In order to have

∫ ε
0
W (t)dt ∼

√
ε, we must have W (t) ∼ 1/

√
ε in at least

over a reasonable fraction of the interval. Letting ε → 0, we see that W (t)
should have infinite values almost everywhere, not much of a function. Just as
the δ−function is defined in an abstract way as a measure, there are abstract
definitions that allow us to make sense of white noise.

Another way to see this is to try to define YT =
∫ T

0
W (t)2dt. Since we already

think white noise paths are discontinuous, it is natural to try to define the
Riemann sum using averages over small intervals rather than values W (tk). We
call the averages

Wk,n =
1

∆t

∫ tk+1

tk

W (t)dt .
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The approximation to YY is

Y
(n)
T = ∆t

n−1∑
k=0

W 2
k,n .

The random variables Wk,n are independent gaussians with mean zero and vari-
ance 1

∆t2 ∆t = 1
∆t . Therefore the W 2

k,n are independent with mean 1
∆t and

variance 2
∆t2 (as the reader should verify). Therefore, Y

(n)
T has mean T/∆t and

standard deviation
√

2T/∆t. Clearly, as n → ∞, Y
(n)
T → ∞. In other words,∫ T

0
W (t)2dt =∞ by the most reasonable definition.

6.1.9 White noise and Brownian motion:

The integrals Y[a,b] of white noise have the same statistical properties as the
increments of Brownian motion. The joint distribution of Y[a1,b1], . . ., Y[an,bn] is
the same as the joint distribution of the increments Xb1 −Xa1

, . . ., Xbn −Xan

(assuming, though this is not necessary, that a1 ≤ b1 ≤ a2 · · · ≤ bn): both are
multivariate normal with zero covariances and variances bk − ak. If W (t) were
a function, this would lead us to write the three relationships

Xt =

∫ t

0

W (s)ds ,
dXt

dt
= W (t) , dXt = W (t)dt . (6.7)

Any of these may be taken as the definition of white noise. This is probably
the main reason most people (who are interested) are interested in Brownian
motion, that it gives a mathematically rigorous and systematic way to make
sense of white noise.

6.1.10 Correlations of integrals with respect to Brownian
motion:

It seems clear that two integrals with respect to Brownian motion should be

jointly gaussian with some covariance we can calculate. In fact, if Yf =
∫ T

0
f(t)dXt

and Yg =
∫ T

0
g(t)dXt, then the approximations Y

(n)
f and Y

(n)
g are jointly normal

and have covariance
∑n−1
k=0 f(tk)g(tk)∆t. Taking the limit ∆t→ 0 gives

cov(Yf , Yg) =

∫ T

t=0

f(t)g(t)dt . (6.8)

6.1.11 δ correlated white noise:

The correlation formula (6.8) has an interpretation used by 90% of the interested

world, not including most mathematicians. If we write Yg =
∫ T
s=0

g(s)dXs and
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formally interchange the order of integration, we get, since dXt and dXs are the
only random variables,

E[YfYg] = E

[∫ T

t=0

f(t)dXt

∫ T

s=0

g(s)dXs

]

=

∫
t∈[0,T ]

∫
s∈[0,T ]

f(t)g(s)E[dXtdXs] .

We get (6.8) with the rule

E[dXtdXs] = δ(t− s)dt . (6.9)

This is the first instance of the informal Ito rule dX2 = dt. It is equivalent
to (6.7) with the rule E[W (t)W (s)] = δ(t − s), which is another indication
that white noise is not a normal function. If we write W (t)dt = dXt to write
Yf =

∫
f(t)W (t)dt, the formula (6.8) follows.

A useful approximation to white noise with a time step ∆t is

W (∆t)(t) =
∑
k

Zk1Ik(t) (6.10)

where Ik is the interval [tk, tk+1] and the Zk are independent gaussians with the
proper variance var(Zk) = 1

∆t . For example, this gives∫ T

0

f(t)W (∆t)dt =
∑
k

∫
Ik

f(t)dtZk ,

which is a random variable practically identical to the approximation (6.2).
The difference is that ∆tf(tk) is replaced by

∫
Ik
f(t)dt = f(tk)∆t+ o(∆t). We

identify the random variables ∆Xk and ∆tZk because they are both multivariate
normal and have the same mean (E[] = 0), variance, and covariances.

6.2 Ito Integration

6.2.1 Forward dXt:

We want to define stochastic integrals such as

YT =

∫ T

0

V (Xt)dXt . (6.11)

The Ito convention is that E[dXt | Ft] = 0. When we make ∆t = T/n approx-
imations to (6.11), we always do it in a way that makes the analogue of dXt

have conditional expectation zero. For example, we might use

Y
(n)
T =

n−1∑
k=0

V (Xtk)(Xtk+1
−Xtk) . (6.12)
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The specific choice ∆Xk = Xtk+1
− Xtk gives E[∆Xk | Ftk ] = 0, which is in

keeping with the Ito convention. We will soon show that the limit Y
(n)
T (X) →

YT (X) exists. This limit is the Ito integral.

6.2.2 Example 1:

This example illustrates the convergence of the approximations, the way in
which the Ito integral differs from an ordinary integral, and the fact that other
approximations of dXt lead to different limits. Take

YT =

∫ T

0

XtdXt ,

and use the approximation

Y
(n)
t =

n−1∑
k=0

Xtk(Xtk+1
−Xtk) .

The trick (see any book on this) is to write

Xtk =
1

2
(Xtk+1

+Xtk)− 1

2
(Xtk+1

−Xtk) .

Now,
(Xtk+1

+Xtk)(Xtk+1
−Xtk) = X2

tk+1
+X2

tk
,

so, using tn = T and X0 = 0,

n−1∑
k=0

Xtk(Xtk+1
−Xtk) =

1

2

n−1∑
k=0

(
X2
tk+1
−X2

tk

)
+

1

2

n−1∑
k=0

(
Xtk+1

−Xtk

)2
=

1

2
X2
T +

1

2

n−1∑
k=0

(
Xtk+1

−Xtk

)2
The second term on the right is the sum of a large number of independent terms
with the same distribution, and mean 1

2E[∆X2
k ] = ∆t

2 . Thus, the second term

is approximately n∆t
2 = T

2 . Letting ∆t→ 0, we get∫ T

0

XtdXt =
1

2
X2
t −

1

2
T .

This is one of the martingales we saw earlier. The Ito integral (6.11) always
gives a martingale, as we will see.

6.2.3 Other definitions of the stochastic integral give dif-
ferent answers:

A sensible person might suggest other approximations to (6.11). With Ik =
[tk, tk+1], we approximated

∫
Ik
V (Xt)dXt by V (Xtk)(Xtk+1

−Xtk), which seems
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like the rectangle rule for ordinary integration. What would happen if we try
the trapezoid rule,

(Wrong!)

∫
Ik

V (Xt)dXt ≈
1

2
[V (Xtk) + V (Xtk+1

)](Xtk+1
−Xtk) ?

The reader should check that in the example V (x) = x above this would give

(Wrong!)

∫ T

0

XtdXt =
1

2
X2
t .

Also, if Xt were a differentiable function of t, with derivative dXt
dt = W (t), we

could write

(Wrong!)

∫ T

0

XtdXt =

∫ T

0

Xt
dXt

dt
dt =

1

2

∫ T

0

dX2
t

dt
dt = X2

T /2 .

From this it seems that the Ito calculus is different from ordinary calculus be-
cause the function Xt is not differentiable in the ordinary sense. The derivative,
white noise, is not a function in the ordinary sense.

6.2.4 Convergence and existence of the integral (6.11):

We show that the approximation (6.12) converges to something as ∆t → 0
(really ∆t = T/2k, k → ∞), assuming that V is “Lipschitz continuous”:
|V (x)− V (x′)| ≤ C |x− x′|. For example, V (x) would be Lipschitz continuous
if V ′ were a bounded function. The convergence is again “pointwise”; the event
that the approximations do not converge has probability zero. As in paragraph
1.5, we compare the contributions from interval Ik = [k∆t, (k + 1)∆t] when
we have ∆t, corresponding to n = 2L subintervals, and ∆t/2 corresponding to
2n = 2L+1 intervals. For ∆t there is just∫

t∈Ik
V (Xt)dXt ≈ V (Xk)(Xk+1 −Xk) .

We use the shorthand Xk for Xtk , and below, Xk+1/2 for X(k+1/2∆t. For ∆t/2
there are two contributions:∫

t∈Ij
V (Xt)dXt ≈ V (Xk)(Xk+1/2 −Xk) + V (Xk+1/2)(Xk+1 −Xk+1/2) .

The difference between these is

Dj = V (Xk+1/2 − V (Xk))(Xk+1 −Xk+1/2) .
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Therefore, using the old double summation trick,

s2
L = E

[(
Y

(2n)
T − Y (n)

T

)2
]

= E

(n−1∑
k=0

Dk

)2


=

n−1∑
j=0

n−1∑
k=0

E[DjDk] .

The terms with j 6= k are zero. Suppose, for example, that k > j. Then
E[(Xk+1 − Xk+1/2) | Fk+1/2] = 0, so E[Dj , Dk] = 0. When V is Lipschitz
continuous,

E[D2
k] ≤ C2E[(Xk+1 −Xk+1/2)2(Xk+1/2 −Xk)2] = C2∆t2/2.

since there are n = 2L terms, this gives s2
L ≤ n∆t ≤ C2∆t/4 = C2T 22−L/4, so∑

L sL <∞, which implies pointwise convergence.

6.2.5 How continuous are Brownian motion paths:

We know that Brownian motion paths are continuous but not differentiable. The
total variation, the total distance travelled (not the net distance |Xt′ −Xt|),
is infinite for any interval. To understand the accuracy and convergence of
approximations like (6.12), we would like some positive quantitative measure
of continuity of Brownian motion paths. One positive statement is “Hölder
continuity”. The function f(t) is Hölder continuous with exponent α if there is
some C so that

|f(t′)− f(t)| ≤ C |t′ − t|α ,

for any t and t′. Only exponents between larger than zero and not more than
one are relevant. Exponent α = 1 is for Lipschitz continuous functions. A larger
α means a more regular function. Besides Brownian motion, fractals such as
the Koch snowflake and the space filling curve are other examples of natural
Hölder continuous functions. The function f(t) = −1/ log(t) is continuous at
t = 0 but not Hölder continuous there. The exponent α = 1/2 seems natural for
Brownian motion because (see the discussion of total variation and quadratic
variation)

E[|Xt′ −Xt|] ∼ |t′ − t|
1/2

.

Actually, this is just slightly optimistic. It is possible to prove, using the Brow-
nian bridge construction (upcoming) that Brownian motion paths are Hölder
continuous with any positive exponent less than 1/2:
Lemma: For any positive α < 1/2, every T > 0, and (almost) every Brownian
motion path Xt, there is a CX so that

|Xt′ −Xt| ≤ CX |t′ − t|
α
.
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for all t ≤ T and t′ ≤ T . Furthermore, E[CX ] <∞.
Remark: The proof of this lemma is really a calculation of (an upper bound
for) E[CX ].

6.2.6 Ito integration with nonanticipating functions:

Ito wants to integrate more general functions than V (Xt) with respect to Brow-
nian motion. For example, he might want to calculate∫ T

0

(
max
s<t

Xs

)
dXt ,

or the iterated integral ∫ T

0

(∫ t

0

X2
sdXs

)
dXt .

Therefore, we consider the more general Ito integral

YT =

∫ T

0

VtdXt , (6.13)

where, for each t, Vt is measurable with respect to Ft. Such functions are
called “adapted” or “nonanticipating” or “causal” (possible subtle distinctions
between these notions go unmentioned here). Nonanticipating functions are
important in studying stochastic decision problems; we are supposed to make
decisions at time t based on information in Ft. Martha Stewart can explain the
consequences of violating this rule, or appearing to do so. The examples above
have

Vt = max
s<t

Xs

and

Vt =

∫ t

0

X2
sdXs

respectively, both measurable in Ft. Of course, Vt is a function of X also (ω in
the abstract description), but as usual we do not indicate that explicitly.

We can show that integrals as general as (6.13) exist by showing that approxi-
mations

Y
(n)
T =

n−1∑
j=0

Vtj (Xj+1 −Xj) (6.14)

converge as ∆t→ 0. The argument in paragraph 2.4 works fine for this purpose
if you assume that Vt is a Hölder continuous function of t (with E[C2] < ∞,
C being the Hölder exponent). Because we might want Vt = Xt (the case of
paragraph 2.4), we should allow Hölder exponents less than 1/2. As before, the
difference between the ∆t and ∆t/2 approximations is

Y
(2n)
T − Y (n)

T =

n−1∑
k=0

Dk ,
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with (in the same shorthand notation)

Dk =
(
Vk+1/2 − Vk

) (
Xk+1 −Xk+1/2

)
.

Again, because V is nonanticipating, E[DiDj ] = 0 if i 6= j. Also,

E[D2
k] ≤ E[C2](∆t/2)2α∆t/2 ,

which proves convergence as before.

6.2.7 Further extension, the Ito isometry:

A mapping is an isometry if distances are the same before and after the map-
ping is applied. For example, rigid rotations of three dimensional space are
isometries; the distance between a pair of points is the same before and after
the transformation is applied. The formula (6.3) is the first shows that the
mapping g 7→ Yg is an isometry in the sense that if the distance between g1 and
g2 is

‖g1 − g2‖2 =

∫ T

0

(g1(t)− g2(t))2dt ,

and the distance between random variables (functions of a random variable)
Y1(ω) and Y2(ω) is

‖Y1 − Y2‖2 = E[(Y1 − Y2)2] =

∫
Ω

(Y1(ω)− Y2(ω))2dP (ω) ,

then we have the isometry (which is just a restatement of (6.3))

‖Yg1 − Yg2‖
2

= ‖g1 − g2‖2 .

Since the mapping is linear, this is the same (just take g = g1 − g2) as showing
that

‖Yg‖2 = ‖g‖2 .

Ito showed that his stochastic integral is an isometry in the same sense. The

left side is the same, and the right side is related to
∫ T

0
V 2
t dt. The difference

is that the latter integral is random. The final Ito isometry is, using Yt(V ) to
indicate that YT depends on the function V :

E
[(
Yt(V )

)2]
=

∫ T

0

E[V 2
t ]dt . (6.15)

It is easy to verify this identity using the approximations (6.14) as usual. The
approximations (6.14) might converge to something as ∆t → 0 even when Vt
is not nonanticipating (i.e. anticipating?), but it is very unlikely that the limit
would satisfy the Ito isometry.

The isometry formula is useful in practical calculations (see assignment 7). It
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also has several applications in the theory. One theoretical application is in
showing that the mapping Vt 7→ YT (V ) may be defined for any nonanticipating
V so that the right side of (6.15) is finite. For any such V and any ε, we must
find a V (ε) so that V (ε) is Hölder continuous in the sense we need, and so that∫ T

0
E[(Vt − V (ε)

t )2] ≤ ε. The Ito isometry formula then shows that, if YT were

to exist, E[(YT − Y (ε))2] ≤ ε, where Y
(ε)
T is the Ito integral of V (ε). From this,

it is possible to show that the Y
(ε)
T do have a limit as ε→ 0 (in a certain sense),

which is the desired YT .

6.2.8 Martingale property:

As a function of T , the Ito integral is a martingale. We can see this from the

approximations (6.12). If we fix ∆t and let T vary, it is clear that Y
(n)
T is a

martingale, since each of the increments, Vtn
(
Xtn+1

−Xtn

)
, has mean zero when

projected onto functions measurable in Ftn . Actually, I’m cheating a bit here
since ∆t was supposed to depend on T , but hopefully the idea is clear. The Ito
isometry formula is an expression of the martingale property. If Zn is a discrete
time martingale with “martingale differences” Wn = Zn−Zn−1, then (with the
convention that W0 = Z0)

Zn =

n∑
k=0

Wk . (6.16)

The martingale property is that E[Wk | Fj ] = 0 if k > j. Therefore, E[WkWj ] =
0 for k 6= j (we may as well suppose k > j, why?). Thus E[Z2

n] =
∑n
k=0E[W 2

k ].
In the Ito integral may be thought of as a continuous time version of (6.16),
with VtdXt playing the role of Wk, and the integral playing the role of the sum.
Corresponding to E[WkWj ] = 0, we have E[VsdXsVtdXt] = δ(t − s)E[V 2

t ],
which leads to the Ito isometry formula.

73



74



Chapter 7

Lecture 7

7.1 Ito Stochastic Differential Equations

7.1.1 Notation:

We switch back to the notation Wt for Brownian motion. We use Xt to de-
note the solution of the stochastic differential equation (SDE). When we write
forward and backward equations for Xt, the independent variable will still be
x. Often we work in more than one dimension. In this case, Wt may be a
vector of independent Brownian motion paths. As far as possible, we will use
the same notation for the one dimensional (scalar) and multidimensional cases.
The solution of the Ito differential equation will be Xt. We sometimes call these
“diffusions”.

7.1.2 The SDE:

A stochastic differential equation is written

dXt = a(Xt, t)dt+ σ(Xt, t)dWt . (7.1)

A solution to (7.1) is a process Xt(W ) that is an adapted function of W (Xt ∈
Ft, where Ft is generated by the values Ws for s ≤ t), so that

XT = X0 +

∫ T

0

a(Xt, t)dt+

∫ T

0

σ(Xt, t)dWt . (7.2)

Because Xt is adapted, the Ito integral on the right of (7.2) makes sense. The
term a(Xt, t)dt is called the “drift” term. If a ≡ 0, Xt will be a martingale;
any change in E[Xt] is due to the drift term. The term σ(Xt, t)dWt is the
“noise” term. The coefficient σ may be called the “diffusion” coefficient, or
the “volatility” coefficient, though both of these are slight misnomers. The
volatility coefficient determines the size of the small scale random motions that
characterize diffusion processes. The form (7.1) is really just a shorthand for
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(7.2). It is traditionally written in differential notation (dXt, dt, dWt) as a
reminder that Ito differentials are more subtle than ordinary differentials from
calculus with differentiable functions.

What separates diffusion processes from simple Brownian motions is that in
diffusions the drift and volatility coefficients may depend on X and t. It might
be, for example, that when X is large, its fluctuation rate is also large. This
would be modeled by having σ(x, t) being an increasing function of x.

In the multidimensional case, we might have Xt ∈ Rn. Clearly, this calls for
a(x, t) ∈ Rn also. This might be called the “drift vector” or “velocity field” or
“drift field”. The volatility coefficient becomes an n×m matrix, with Wt ∈ Rm
being m independent sources of noise. The case m < n is called “degenerate
diffusion” and arises often in applications. The case n = m and σ non singular
is called “nondegenerate diffusion”. The mathematical character of the forward
and backward equations is far more subtle for degenerate diffusions than for
nondegenerate diffusions. The case m > n arises in practice only by mistake.

7.1.3 Existence and uniqueness of Ito solutions:

Just as the Ito value of the stochastic integral is one of several possible values
depending on details of the definition, we might expect the solution of (7.1)
to be ambiguous. We will now see that this is not so as long as we use the
Ito definition of the stochastic integral in (7.2). The main technical fact in
the existence/uniqueness theory is a “short time contraction estimate”: the
mapping defined by (7.2) is a contraction for if t is small enough. Both the
existence and uniqueness theorems follow quickly from this.

Suppose Xt and Yt are two adapted stochastic processes with X0 = Y0. We
define X̃t from Xt using (7.2) by

X̃T =

∫ T

t=0

a(Xt, t)dt+

∫ T

t=0

σ(Xt, t)dWt .

In the same way, Ỹ is defined from Y . We assume that a and σ are Lipshchitz
continuous in the x arguments: |a(x, t)− a(y, t)| ≤M |x− y|, |a(x, t)− a(y, t)| ≤
M |x− y|. The best possible constants in these inequalities are called the “Lip-
schitz constants” for a and σ. The mapping X 7→ X̃ is a“ contraction” if∥∥∥X̃ − Ỹ ∥∥∥ ≤ α ‖X − Y ‖ ,
for some α < 1, that is, if the mapping shortens distances between objects by
a definite ratio less than one. Of course, whether a mapping is a contraction
might depend on the sense of distance, the norm ‖·‖. Because our tool is the
Ito isometry formula, we use

‖X − Y ‖2T = max
0≤t≤T

E
[(
Xt − Yt

)2]
; .
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The contraction lemma is:
Lemma: If a and σ are Lipshcitz with Lipschitz constant M , then∥∥∥X̃ − Ỹ ∥∥∥2

T
≤ 4M2T ‖X − Y ‖2T . (7.3)

For the proof, we first write

X̃T − ỸT =

∫ T

t=0

(
a(Xt, t)− a(Yt, t)

)
dt+

∫ T

t=0

(
σ(Xt, t)− σ(Yt, t)

)
dWt .

We have E[(X̃T − ỸT )2] ≤ 2A+ 2B where

A = E

(∫ T

t=0

(
a(Xt, t)− a(Yt, t)

)
dt

)2
 .

and

B = E

(∫ T

t=0

(
σ(Xt, t)− σ(Yt, t)

)
dWt

)2
 .

Bounding the B term is an application of the Ito isometry formula. Indeed,

B ≤
∫ T

t=0

E
[(
σ(Xt, t)− σ(Yt, t)

)2]
dt ,

Using the Lipschitz continuity of σ then gives

B ≤M2T max
0≤t≤T

E[(Xt − Yt)2] ,

which is the sort of bound we need.

The A term is an application of the Cauchy Schwartz inequality(∫ T

t=0

(
a(Xt, t)− a(Yt, t)

)
dt

)2

≤
∫ T

t=0

(
a(Xt, t)− a(Yt, t)

)2
dt ·

∫ T

t=0

1dt

If we now use the Lipschitz continuity of a and take expectations of both sides,
we get

A ≤M2T max
0≤t≤T

E[(Xt − Yt)2] ,

These two inequalities prove the contraction lemma estimate (7.3).

7.1.4 Uniqueness:

The contraction inequality gives a quick proof of the uniqueness theorem. We
will see that if X0 is a random variable, then the solution up to some time T
is unique. Of course, then XT is a random variable and may be thought of
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as initial data for the next T time period. This give uniqueness up to time
2T , and so on. Suppose Xt and Yt were two solutions of (7.2). We want to
argue that E[(Xt − Yt)2] < αE[(Xt − Yt)2] for α < 1. This is impossible unless
[(Xt − Yt)2] = 0, that is, unless Xt = Yt. From (7.3), we will have α < 1 if
T < 1/4M2.

The contraction lemma does not say E[(X̃t − Ỹt)2] < αE[(Xt − Yt)2]. To work
with the information it actually gives, define mT = maxt<T E[(Xt − Yt)2], and
m̃T = maxt<T E[(X̃t − Ỹt)

2]. From the definitions, it is clear that mt is an
increasing function of t, so that (7.3) implies that E[(X̃t − Ỹt)2] ≤ αmt ≤ αmT

if T > t. That is, (7.3) implies that m̃T ≤ αmT . This gives a contradiction
as before: Since X and Y are solutions, we have m̃ = m, so m̃T ≤ αmT is
impossible unless mT = 0.

7.1.5 Existence of solutions via Picard iteration:

The contraction inequality (7.3) allows us also to show that there is an XT

satisfying (7.2), at least for T < 1/4M2. You might remember this construc-
tion, Picard iteration, from a class in ordinary differential equations. The first
“iterate” does not come close to satisfying the equations but just gets the ball

rolling: X
(0)
t = X0 for all t ≤ T . This X

(0)
t does not depend on Wt, but it will

still be random if X0 is random. For k > 0, the iterates are defined by

X
(k)
t =

∫ t

s=0

a(X(k−1)
s , t)dt+

∫ t

s=0

σ(X(k−1)
s , t)dWt . (7.4)

The contraction inequality implies that the Picard iterates, X(k), converge as
k → ∞. In (7.3), take X to be X(k−1), and Y = X(k). Then X̃ = X(k) and
Ỹ = X(k+1). If we define

m
(k)
T = max

0≤t≤T
E
[(
X

(k)
t −X(k)

t

)2]
,

and use the ideas of the previous paragraph, (7.3) gives

m
(k+1)
T ≤ αm(k)

T .

This implies that, for any t ≤ T , the iterates X
(k)
t have E[(X

(k+1)
t −X(k)

t )2] ≤
m

(0)
T , which (as we saw in the previous lecture) implies that limk → ∞X(k)

t

exists. The contraction inequality also shows (reader: think this through) that
this limit, Xt satisfies (7.2) and therefore is what we are looking for.

7.1.6 Diffusions as martingales:

If the drift coefficient in (7.1) vanishes, a(x, t) ≡ 0, then the process Xt is a

martingale. Indeed, any process Xt =
∫ t

0
FsdWs, with a nonanticipating Fs is

a martingale. There is a very general converse to this statement. More or less
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(leaving out the technical details, obviously), any adapted process, Xt, with
continuous sample paths,

P (“Xt is a continuous function of t′′) = 1 ,

has a representation in the form (7.1), except that in general, we must take σ to
be a general adapted function of t, not necessarily a function of Xt only. In dis-
crete time, a martingale, Xk, may be written as a sum of martingale differences,
Yk = Xk−Xk−1, in that Xk = X0 +

∑k−1
j=0 Yj . The Ito integral representation of

the continuous time martingale Xt is a continuous time version of the represen-
tation of a discrete time martingale as a sum of martingale differences. What
makes the continuous time version really different (rather than just technically
different) is the unique role of Brownian motion. The proof has to construct
the Brownian motion path related to X.

7.1.7 The structure of correlated gaussians:

In the multidimensional case, σ will be a matrix. We think of σdWt as the
source of noise. The several components of σdWt may be correlated, modeling
the fact that the noise terms driving the several components of Xt are corre-
lated. The matrix σ tells us how to make correlated noises of varying strengths
from uncorrelated noises of constant strength, the components of Wt. The role
of σ is to correlate the noise sources and to modulate their strengths.

One often hears people referring, for example, to tow correlated Brownian mo-
tion paths, with correlation coefficient ρ. A simpler special case of this would be
standard normal random variables, Z1 and Z2, with correlation ρ. If we suppose
that (Z1, Z2) form a multivariate (bivariate) normal, the covariance matrix has
entries C11 = var(Z1) = 1, C22 = var(Z2) = 1, and C12 = cov(Z1, Z2) = ρ. The
correlation coefficient and the covariance are the same here because the vari-
ances are both one. We can make such correlated normals from uncorrelated
normals in the following way. Let U1 and U2 be independent standard normals.
Take Z1 = U1 and Z2 = ρU1 +

√
1− ρ2U2. The term ρU1 in the Z2 formula

gives the correct correlation with U1, provided the rest of Z2 is independent of
Z1. The term

√
1− ρ2U2 gives enough independent noise so that var(Z2) = 1.

In matrix form, this is(
Z1

Z2

)
=

(
1 0

ρ
√

1− ρ2

)
·
(
U1

U2

)
.

The point is that you can make correlated standard normals from independent
ones, but you need a matrix, σ.

And the σ you need is not unique. Suppose σ is an n×M matrix, and σ1 = σQ,
where Q is an m ×m orthogonal matrix. If U is an m vector of independent
standard normals, then Z = σU , and Z(1) = σ1U are each multivariate normals
with the same probability distribution. That is, Z and Z(1) are indistinguishable
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if you do now know U . Applied to SDEs, this says that Z and Z(1) produce
paths X and X(1) that have are indistinguishable if you do not know W . In
particular, the “QR” factorization of σ∗, w(i.e. the “LQ” factorization of σ)
says that we may take σ to be lower triangular. If σ is lower triangular, the
components of W beyond the nth all have coefficient zero. This is why it is a
mistake if you have more sources of noise than components of X.

7.2 Ito’s Lemma

We want to work out the first few Picard iterates in an example. This leads to a
large number of stochastic integrals. We could calculate any of them in an hour
or so, but we would soon long for something like the Fundamental Theorem
of calculus to make the calculations mechanical. That result is called “Ito’s
lemma”. Not only is it helpful in working with stochastic integrals and SDE’s,
it is also a common interview question for young potential quants. Here is the
answer.

7.2.1 The Fundamental Theorem of calculus:

The following derivation of the Fundamental Theorem of ordinary calculus pro-
vides a template for the derivation of Ito’s lemma. Let V (t) be a differentiable
function of t with ∂tV being Lipschitz continuous. The Fundamental Theorem
states that (writing ∂tV for dV/dt although V depends only on t):

V (T )− V (0) =

∫ T

0

dV =

∫ T

0

∂tV (t)dt .

This exact formula follows from two approximate short time approximations,
the first of which is

V (t+ ∆t)− V (t) = ∂tV (t)∆t+O(∆t2) .

The second approximation is (writing ∂tV (s) for V ′(s)):

∫ t+∆t

t

∂tV (s)ds = ∂tV (t)∆t+O(∆t2) .
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Using our habitual notation (∆t = T/n = T/2L, tk = k∆t, Vk = V (tk)), we
have, using both approximations above,

Vn − V0 =

n−1∑
k=0

(
Vk+1 − Vk

)
=

n−1∑
k=0

(
∂tV (tk)∆t+O(∆t2)

)
=

n−1∑
k=0

(∫ tk+1

tk

∂tV (tk)dt+O(∆t2)
)

=

∫ T

0

∂tV (t)dt+ nO(∆t2) .

Because n∆t = T , n∆t2 = TO(∆t)→ 0 as n→∞.

7.2.2 The Ito dVt:

The Fundamental Theorem may be stated dV = ∂tV dt. This definition makes∫ T

0

dVt = V (T )− V (0) . (7.5)

We want to extend this to functions Vt that depend on W as well as t. For any
adapted function, we define dVt so that (7.5) holds. For example, if Ut is an

adapted process and VT =
∫ T

0
UtdWt, then dVt = UtdWt because that makes

(7.5) hold. Ito’s lemma is a statement of what makes (7.5) hold for specific
adapted functions Vt.

7.2.3 First version:

Our first version of Ito’s lemma is a calculation of dVt when Vt = V (Wt, t) and
V and W are one dimensional. The result is

dVt = ∂WV (Wt, t)dWt +
1

2
∂2
WV (Wt, t)dt+ ∂tV dt . (7.6)

What’s particular to stochastic calculus is the “Ito term” 1
2∂

2
WV (Wt, t)dt. Even

if we can’t guess the precise form of the term, we know something has to be
there. In the special case Vt = V (Wt), the ∂tV dt term is missing. The guess

dV = ∂WV dWt would give (see (7.5)) V (t) − V (0) =
∫ T

0
∂WV dWt. We know

this cannot be correct: the right side is a martingale while the left side is not
(see assignment 5, question 1). To make the martingale integral into the non
martingale answer, we have to add a dt integral, which is why some term like
1
2∂

2
WV (Wt, t)dt is needed. A motivation for the specific form of the Ito term is

the observation that it should vanish when V is a linear function of W .
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7.2.4 Derivation, short time approximations:

The derivation of Ito’s lemma starts with the stochastic versions of the two short
time approximations behind the Fundamental Theorem. For convenience, we
drop all t subscripts and write ∆W for Wt+∆t −Wt. We have

V (Wt+∆t, t+ ∆t)− V (W, t) =

∂WV (W, t)∆W +
1

2
∂2
WV (W, t)∆W 2 + ∂tV (W, t)∆t+O(∆t3/2) .

The other short time approximation is provided by assignment 7, question 3,
applied to ∂WV :∫ t+∆t

t

∂WV (Ws, s)dWs = ∂WV (Wt, t)∆W+
1

2
∂2
WV (W, t)

(
∆W 2−∆t

)
+O(∆t3/2) .

For dt integrals, the result is simply∫ t+∆t

t

U(Ws, s)ds = U(W, t)∆t+O(∆t3/2 .

The error term is O(∆t3/3) rather than O(∆t2) because Wt is not a Lipschitz
continuous function of t. We conbine these approximations with a little algebra
(∆W 2 = ∆t + (∆W 2 − ∆t), which might be considered the main idea of this
section) gives

∆V =

∫ t+∆t

t

∂WV (Ws, t)dWs

+

∫ t+∆t

t

(
1

2
∂2
WV (Ws, s) + ∂tV (Ws, s)

)
ds

+∂2
WV (W, t)

(
∆W 2 −∆t

)
+O(∆t3/2) .

As with the Fundamental Theorem, we apply this with t = tk (in the habitual
notation) and sum over k, giving:

V (T )− V (0) =

∫ T

0

∂WV (Wt, t)dWt

+

∫ T

0

(
1

2
∂2
WV (Wt, t) + ∂tV (Wt, t)

)
dt

+

n−1∑
k=0

∂2
WV (Wk, tk)

(
∆W 2

k −∆t
)

+O(T
√

∆t) .

7.2.5 The non Newtonian step:

The final step in deriving Ito’s lemma has no analogue in the proof of Newton’s
Fundamental Theorem of calculus. We study the term

A =

n−1∑
k=0

∂2
WV (Wk, tk)

(
∆W 2

k −∆t
)
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and show that A→ 0 as ∆t→ 0 (actually, as L→∞ with ∆t = T/2L) almost
surely. Previous experience might lead us to calculate E[A2

L]. This follows a
well worn path. We have the double sum expression:

E[A2
L] =

1

4

∑
j,k

E
[(
·
)
j

(
·
)
k

]
.

The j 6= k terms have expected value zero because (if k > j) E[∆W 2
k − ∆t |

Ftk ] = 0. We get a bound for the j = k terms using E[(∆W 2
k −∆t)2 | Ftk ] =

2∆t2:
E
[
∂2
WV (Wk, .tk)2

(
∆W 2

k −∆t
)2 | Ftk] ≤ C ·∆t2 .

Altogether, we get E[A2
L] ≤ C∆t = C2−L, which implies that AL → 0 as

L → ∞, almost surely (see the next paragraph). This completes our proof of
the first form of Ito’s lemma, (7.6).

7.2.6 A Technical Detail:

Here is a proof that uses the inequalities E[A2
L] ≤ Ce−βL for some β > 0

and proves that AL → 0 as L → ∞ almost surely. The proof is an easier
version of an argument used in the previous lecture. As in that lecture, we start
with a observation, this time that |AL| → 0 as L → ∞ if

∑∞
L=1 |AL| < ∞.

Also, the sum is finite almost surely if it’s expected value is finite. That is, if∑∞
L=1E[|AL|] < ∞. Finally, the Cauchy Schwartz inequality gives E[|Al] ≤

Ce−βL/2. Since this has a finite sum (over L), we get almost sure convergence
AL → 0 as L→∞.

7.2.7 Integration by parts:

In ordinary Newtonian (and Leibnitzian) calculus, the integration by parts iden-
tity is a consequence of the Fundamental Theorem and facts about differentia-
tion (the Leibnitz rule). So let it be for Ito. For instance, integration by parts
might lead to ∫ T

0

tdWt = TWT −
∫ T

0

Wtdt . (7.7)

We can check whether this actually is true by taking the Ito differential of tWt:

d(tWt) = ∂W (tWt)dWt +
1

2
∂2
W (tWt)dt+ ∂t(tWt)dt

= tdWt +Wtdt .

This implies that

TWT =

∫ T

0

tdWt +

∫ T

0

Wtdt ,

which is a confirmation of (7.7). We can get a more general version of the same
thing if we apply the Ito differential to f(t)g(Wt) (reader: do this).
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7.2.8 Doing
∫
WtdWt the easy way:

If Ito’s lemma is to play the role of the Fundamental Theorem of calculus, it
should help us calculate stochastic integrals. In ordinary calculus we calculate
integrals by differentiating guesses to see which guess works. After a while, we
become more systematic guessers. To compute a stochastic integral, we need to
guess a function Ft so that dFt is the integrand. A first example of this is

YT =

∫ T

0

WtdWt . (7.8)

Using ordinary calculus as a clue, we might try Ft = 1
2W

2
t . We calculate, using

(7.6),

dF = ∂WFdW +
1

2
∂2
WFdt+ ∂tF = WdW + dt+ 0 .

We see that we did not get the desired answer, dF is not the integrand WdW .
However, it is almost right, missing by dt. To correct for this, try the more
sophisticated guess F = 1

2W
2
t − t. Repeating the differentiation, we see that

indeed

d(
1

2
W 2
t − t) = WtdWt .

as desired. Ito’s lemma than tells us that

1

2
W 2
T − T − (

1

2
W 2
T − T ) =

∫ T

0

WtdWt .

7.2.9
∫
W 2

t dXt the easy way:

To calculate ∫ T

0

W 2
t dWt

we again start with the calculus guess, which this time is F = 1
3W

3
t . The Ito

differential of this is

d
1

3
W 3
t = W 2

t dWt +
1

2
2Wtdt .

This differs from our integrand (W 2
t dWt) by the term Wtdt. We can get Wtdt

by differentiating
∫ t

0
Wsds. Therefore,∫ T

0

W 2
t dWt =

1

3
W 3
T −

∫ T

0

Wtdt .

If you still consider this to be a guess, you can check it by taking the differential
of both sides. The left side gives W 2

T dWT . The right side gives W 2
T dWT +

WT dt−WT dt, which is the same thing.
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7.2.10 Solving an SDE:

Here is one way to solve the SDE:

dXt = XtdWt , X0 = 1 . (7.9)

The ordinary calculus result would be XT = eWT . To see whether this satisfies
(7.9), we calculate the Ito differential:

deWT = ∂W e
W
T dWT +

1

2
∂2
W e

WT dt+ ∂te
WT dt = eWT dWT +

1

2
eWT dt .

The first term on the left is indeed XT dWT , so we need somehow to get rid of
the second term. After some false starts, we hit on the idea to try a solution of
the form Xt = A(t)eWt . Now the differential is

d
(
A(t)eWt

)
= A(t)∂W e

W
t dWt +A(t)

1

2
∂2
W e

Wtdt+ ∂tA(t)eWtdt

= A(t)eWt dWt +A(t)
1

2
eWtdt+ Ȧ(t)eWtdt .

The first term on the right is the desired answer XtdWt. The second and third
terms will cancel if 1

2A + Ȧ = 0, i.e. if A(t) = e−t/2. Our new guess, then, is

Xt = eWt−t/2. We can check this with the calculation deWt−t/2 = eWt−t/2dWt

(because, by design, the dt terms cancel).

A consistency check is thatXt should be a martingale, becauseXT =
∫ T

0
XtdWt,

and the Ito integral always gives a martingale. We can check, for example, that
E[Xt] = 1 for any t.

7.2.11 Differentials of functions of Xt:

The formal formulation (7.1) of an Ito SDE is in fact a relation among Ito
differentials, which is precisely what (7.2) says. We can also compute dV (Xt) (or
even dV (Xt, t), which is more complicated but not harder) using the reasoning in
paragraphs 2.4 and 2.5 above. I will breeze through the argument, commenting
only on the differences. Some of the details are left to assignment 8. We can
calculate

∆V (X) = ∂XV (xt)∆Xt +
1

2
∂2
XV (X)∆X2 +O(∆t3/2) .

Also∫ t+∆t

t

∂XV (Xs)dXs = ∂XV (Xt)∆Xt+
1

2
∂2
XV (Xt)

(
∆X2−σ(Xt)

2∆t
)
+O(∆t3/2) .

The new feature is that E[∆X2] = σ(Xt)
2∆t+O(∆t3/2). After this, the deriva-

tion proceeds as before, eventually giving

dV (Xt) = ∂XV (Xt)dXt +
1

2
∂2
XV (Xt)σ(Xt)

2dt . (7.10)
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7.2.12 The “Ito rule” dW 2 = dt:

The first version of Ito’s lemma can be summarized as using Taylor series cal-
culations and neglecting all terms of higher than first order except for dW 2

t ,
which we replace by dt. You might think this is based on the approximation
∆W 2 ≈ ∆t for small ∆t. The real story is a little more involved. The relative
accuracy of the approximation ∆W 2 ≈ ∆t does not improve as ∆t → 0. Both
sides go to zero, and at the same rate, but they do not get closer to each other
in relative terms. In fact, the expected error, E[|∆W 2 − ∆t|], is also of order
∆t. If ∆t = .1 then ∆W 2 is just as likely to be .2 as .1, not really a useful
approximation. The origin of Ito’s rule is that ∆W 2 and ∆t have the same
expected value. For that reason, if we add up m ∆W 2 values, we are likely

to get a number close to m∆t if m is large. We might say
∫ b
a
dW 2 =

∫ b
a
dt,

thinking that each side is make up of a large number (an infinite number) of
tiny ∆W 2 or ∆t values. Remember that for any Q, the Ito dQ is what you have
to integrate to get Q. Integrating dW 2 gives the same result as integrating dt.

7.2.13 Quadratic variation:

The informal ideas of the preceding paragraph may be fleshed out using the
“quadratic variation” of a process. We already discussed the quadratic varia-
tion of Brownian motion. For a general stochastic process, Xt, the quadratic
variation is

〈X〉t = lim
∆t→0

n∑
k=0

(
Xk+1 −Xk

)2
. (7.11)

If we apply the approximation from assignment 8, question 2b, we get

n∑
k=0

(
Xk+1 −Xk

)2
=

(
n∑
k=0

σ(Xk, tk)2∆X2
k

)
+O(n∆t3/2) .

Our usual trick is to use ∆X2
k = ∆t + (∆X2 − ∆t) to write the last sum as

an approximation of a dt integral plus something with mean zero that does not
add up to much. The result is

〈X〉t =

∫ t

0

σ2(Xs, t)ds .

In particular,

d 〈X〉t = σ2(Xt)dt .

Ito’s lemma for Xt satisfying the SDE (7.1) may be written

dV (Xt) = ∂XV (Xt)dXt +
1

2
∂2
XV (Xt)d 〈X〉t . (7.12)
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7.2.14 Geometric Brownian motion again:

Here is another way to find the solution of dXt = Xtdt. Since we expect Xt to
be an exponential, we calculate the SDE satisfied by Yt = log(Xt). Ito’s lemma
in the form (7.12) allows us to calculate

dYt = ∂X log(Xt)dXt +
1

2
∂2
X log(Xt)X

2
t dt

=
1

Xt
XtdWt +

1

2

(
− 1

X2
t

)
X2
t dt

dYt = dWt −
1

2
dt .

This gives Yt = Y0 +Wt− t
2 . Since Xt = eYt , we get Xt = X0e

Wt−t/2, as before.

7.2.15 Remarks on the solution:

The solution Xt = X0e
Wt−t/2 provides some insight into how martingales can

behave and the importance of rare events. We know that Brownian motion paths
Wt are on the order of

√
T . Therefore for large t, the exponent is Wt − t

2 ≈
−t/2. That is, nearly all (not almost all) geometric Brownian motion paths
are exponentially small for any particular large t. Nevertheless, since Xt is a
martingale, E[Xt] = 1. Those rare paths with Wt > t/2 are just big enough
and just likely enough to save E[Xt] from being exponentially small. For the
record, P (Wt > t/2) < e−t/8, is very small (about 1/1000 for t = 100). This
means that if you simulate, say, 500 paths, there is a pretty good chance that
none of them is as big as the mean. Monte Carlo simulation is very unreliable
in such cases.
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Chapter 8

Lecture 8

8.1 Girsanov’s theorem

Girsanov’s theorem relates solutions of Ito differential equations with different
drifts. It is also an example of an interesting possibility in probability, comput-
ing the expected value of one random variable by using a random variable with
a different probability measure. In Monte Carlo, this is called “importance sam-
pling”, and is used to in making accurate estimates of very small probabilities.

8.1.1 Probability densities and Lebesgue measure:

For Brownian motion, we gave a probability measure but not a probability
density. For a simple gaussian random variable X ∼ N (0, 1) we instead give

a probability density, u(x) =
√

1
√

2πe−x
2/2. This is possible because there

already is a measure on the probability space Ω = R, Lebesgue measure. When
we write E[V (X)] =

∫
V (x)u(x)dx, the dx refers to integration with respect to

Lebesgue measure, which is “uniform measure”, λ((a, b)) = b− a (here λ(A) is
the Lebesgue measure of A, applied to A = (a, b)). It is also possible to define
the “standard normal probability measure”, P . This is P (A) =

∫
A
u(x)dx.

We then have E[V (X)] =
∫
R
V (x)dP (x) In abstract probability we describe

this situation by saying that the gaussian measure P (possibly written dP ) is
“absolutely continuous” with respect to Lebesgue measure, λ (possibly written
dx). The function u(x) is the density of dP with respect to dx, sometimes
written u(x) = dP

dx . The formal ratio dP
dx is also called the “Radon Nikodym

derivative” of the gaussian measure dP with respect to Lebesgue measure dx.

8.1.2 The Radon Nikodym derivative:

A more abstract version of this situation is that there is a probability space
Ω, a σ−algebra of sets F , and two measures dP (ω), and dQ(ω). We will
suppose that both are probability measures, though this is not necessary; dQ
was Lebesgue measure in the previous paragraph. We say that L(ω) is the
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Radon Nikodym derivative of dP with respect to dQ and write L(ω) = dP (ω)
dQ(ω)

if P (A) =
∫
ω∈A L(ω)dQ(ω). We use L here and below (instead of u as above),

because the Radon Nikodym derivative is closely related to what statisticians
call the “likelihood ratio”. The definition of L is the same as saying that for
any function, V (ω),

EP [V (ω)] =

∫
Ω

V (ω)dP (ω) =

∫
Ω

V (ω)L(ω)dQ(ω) = EQ[V (ω)u(ω)] . (8.1)

Following an earlier custom, we write EP [·] for expectation with respect to the
probability measure P .

8.1.3 Radon Nikodym derivative as likelihood ratio:

If X0 and X1 are two random variables with densities u0(x) and u1(x), then
they have probability measures dP (x) = u0(x)dx and dQ(x) = u1(x)dx respec-
tively. Therefore, L(x) = dP (x)/dQ(x) = u0(x)dx/u1(x)dx = u0(x)/u1(x).
The Radon Nikodym derivative is the ratio of the probability densities. Statis-
ticians often call probability densities “likelihoods”, particularly when thinking
of them as a function of some parameter (the mean, variance, etc.). The ratio of
probability densities becomes the “likelihood ratio”, L. Though our canceling
dx from the numerator and denominator is not rigorous, the formula L = u0/u1

is easy to check in the integral definition (8.1), as in the following example.

8.1.4 Example of one dimensional gaussians:

Suppose the measure P corresponds to a standard normal, u0(x) = 1√
2π
e−x

2/2,

and Q to a N (µ, 1) random variable, uµ(x) = 1√
2π
e−(x−µ)2/2 . The Radon

Nikodym derivative dP/dQ is given by L(x) = u0(x)/uµ(x) = e−µx+µ2/2. We
can verify this by checking, using the standard gaussian integration formulas for
expectation values, that

E0[V (X)] =
1√
2π

∫
R

V (x)e−x
2/2dx

=
1√
2π

∫
R

V (x)L(x)e−(x−µ)2/2dx

= Eµ[V (X)L(X)] .

8.1.5 Absolutely continuous measures:

It might seem that it is easy to calculate the Radon Nikodym derivative, and
it generally is, provided it exists. Given probability measures P and Q on the
same space, Ω, with the same measurable sets, F , there might be an event, A,
that has probability zero in the Q probability but positive P probability. In
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that case, it is impossible to have

P (A) =

∫
A

L(ω)dQ(ω) ,

because the left side must be zero if Q(A) = 0. The Radon Nikodym theorem
says that this is the only thing that can go wrong.
Theorem: If Q(A) = 0 implies P (A) = 0 for every measurable event, A, then
there is a Radon Nikodym derivative, L(ω), that represents P in terms of Q.

8.1.6 Examples in finite dimensions:

These illustrate the possibility that one measure may not be absolutely continu-
ous with respect to another, but they do not give much intuition about the sub-
tlety of absolute continuity applied to diffusions. As one example, consider two
one dimensional random variables, the standard exponential and the standard
normal. The exponential random variable has probability density u1(x) = 0 if
x < 0 and u(x) = e−x for x > 0. The standard normal has density u0(x) as
above. The event A = {“x < 0”} = (−∞, 0) has Q probability (standard nor-
mal probability) Q(A) = .5 but P probability P (A) = 0, since the exponential
random variable is never negative. In this situation we say that the gaussian
measure is not absolutely continuous with respect to the exponential measure.
On the other hand, the exponential measure is absolutely continuous with re-
spect to Gaussian measure: an event whose gaussian probability is zero also has
exponential probability zero.

As another example, suppose we choose the random variable X by first tossing
a “fair” coin. If the toss is H (probability p), we set X = 0. If the toss is T
(probability q = 1 − p), we make X to be a standard normal. The probability
density for the resulting random variable is

u(x) = pδ(x) + frac1− p
√

2πe−x
2/2 .

This density is a “mixture” of the delta function and the standard normal den-
sity. It is not absolutely continuous with respect to the “pure” standard normal
measure because the event X = 0 has probability p > 0 for u but probability
zero for the standard normal alone. Here, the lack of absolute continuity is
caused by a concentration of probability rather than the density being zero in
a large region (x < 0 above).

8.1.7 Cantor measure:

This shows that it is possible to concentrate probability in a set of Lebesgue
measure zero without concentrating it at a point as in the delta measure. The
Cantor measure (after Georg Cantor, a late nineteenth century German math-
ematician) is defined on the interval 0 ≤ x ≤ 1 by throwing out all the “middle
thirds” and concentrating the measure on what remains, which is called the
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Cantor set, C. To determine whether an x ∈ [0, 1] is in C, we give it’s repre-
sentation base 3: x = 0.a1a2a3 · · · , where each ak is one of the numbers 0, 1, or
2, and

x =

∞∑
k=1

3−kak .

The ordinary decimal representation is the same thing with 3 replaced by 10.
For example,

1

4
= 0.020202 · · · ,

1

5
= .012012 · · · .

The Cantor set is the set of numbers that have ak 6= 1 for all k. The condition
a1 6= 1 rules out all numbers x ∈ ( 1

3 , 23), the middle third of (0, 1). The middle
thirds of the first third and third third are ruled out by the condition a2 6= 0;
numbers of the form 0.01a3, a4 · · · form the interval ( 1

9 ,
2
9 ), which is the middle

third of the first third, and numbers of the form 0.21a3, a4 · · · form the interval
( 7

9 ,
8
9 ), which is the middle third of the third third.

With respect to uniform measure (Lebesgue measure) in the unit interval, the
Cantor set has probability zero. The probability that x will be thrown out
because a1 = 1 is 1

3 . If x is spared (probability 2
3 ), it is thrown out because

a2 = 1 again with probability 1
3 . The probability of being spared k times is

2
3

k → 0 as k → ∞. To be in C, x must be spared infinitely many times, an
event of Lebesgue measure zero.

To define the Cantor measure, we need to give PC(A) for any A ⊆ C. For
each x ∈ A we define a y ∈ (0, 1) by giving the base 2 binary expansion y =
0.b1, b2, b3 · · · , where bk = 0 if ak = 0 and bk = 1 if ak = 2. That is

y =
∑

k∈T (x)

2−k , where T (x) = {k | ak = 2} .

The set of all such y coming from an x ∈ A is called B. The Cantor measure
of A will be the ordinary Lebesgue (uniform) measure of B. If A ⊆ [0, 1], we
define PC(A) = PC(A∩C). We can think of the Cantor measure as coming from
an infinite sequence of cut and squeeze steps. First we cut the unit interval in
the middle and squeeze the first half into the first third and the second half to
the third third. This gives the first and third thirds probability 1

2 each and the
middle third probability zero. We then cut and squeeze out the middle third of
the first and third thirds, giving each of the 4 remaining ninths measure 1

4 , and
so on.

The Cantor set and Cantor measure provide illustrate some things that can go
wrong in measure theory. . . .
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8.1.8 Alternative descriptions of a random variable:

It often happens that we can describe a random X ∈ S either as a random
variable in its own right by giving a probability measure, Q, on S, or as a func-
tion of another random variable ω ∈ Ω with measure P . If we have a function
V (x) and we want the expected value, E[V (X)], we may calculate it either as∫
S V (x)dQ(x) or as

∫
Ω
V (X(ω)dP (ω). Of course, the function X(ω) and the

measure P determine the measure Q. Nevertheless, we sometimes can make use
of a direct description of Q without reference to P and Ω. Girsanov’s theorem
is about the measure in path space defined by the solution of a stochastic dif-
ferential equation. In this case, Ω is the space of Brownian motion paths and
X(W ) is the solution of the SDE for Brownian motion path W , which plays the
role of ω here. To state Girsanov’s theorem, we have to be able to understand
the X measure without reference to the underlying W .

8.1.9 A one dimensional mapping example:

Suppose Ω = (0, 1] and P is uniform measure, leaving out the point zero for
simplicity. For each ω ∈ (0, 1] we define X(ω) = − ln(ω) (ln(ω) is the log base e).
This is a 1− 1 transformation; there is a unique X ≥ 0 for each ω ∈ (0, 1], and

vice versa. If V (x) = x2, we could evaluate E[V (X)] as the integral
∫ 1

0
ln(ω)2dω.

The other way is to find the PDF for X directly. Since X ≥ 0, this density is
zero for x < 0. We call it u(x) and find it from the relation

u(x)dx = P (x ≤ X ≤ x+ dx)

= P (x < − ln(ω) < x+ dx)

= P (−x− dx < ln(ω) < −x)

= P (e−xe−dx < ω < e−x)

= P (e−x − dxe−x < ω < e−x)

= dxe−x .

The last line is because ω is uniformly distributed in (0, 1] so the probability of
being in any interval (a, b) is b−a, here with a = e−x−dxe−x and b = e−x. The
conclusion is that u(x) = e−x, which is to say that X is a standard exponential
random variable. Now we can calculate the same expected value as

E[X2] =

∫ ∞
x=0

x2e−xdx =

∫ 1

ω=0

ln(ω)2dω .

The P measure is uniform measure on (0, 1]. The Q measure is standard expo-
nential measure. The mapping is X(ω) = − ln(ω).

8.1.10 Distinguishing random variables:

Suppose we have probability measures P and Q on the same space, S. A
“sample” will be a random variable X ∈ S with either the P or Q probability
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measures. One of the main questions in statistics is finding statistical tests to
determine whether X was drawn from the P or Q populations, i.e., which of P
or Q describes X. A “hypothesis test” is a decomposition of S into two sets,
here called AP and AQ (AP and AQ disjoint, AP ∪ AQ = S). The hypothesis
test based on this decomposition reports X ∼ P if X ∈ AP and X ∼ Q if
X ∈ AQ. Generally speaking, in statistics your hypothesis test conclusions are
not certain, but hold with a certain (hopefully high) likelihood.

Suppose there is an event A ⊆ S so that P (A) > 0 but Q(A) = 0. If we use this
set for the hypothesis test, (taking AP = A and AQ = S−A), then whenever our
hypothesis test reports P , it must be correct. In statisticians’ language, there is
a hypothesis test with zero type II error. This shows that the possibility of an
(in some respects) infallible hypothesis test is equivalent to absolute continuity
or lack of absolute continuity of measures. If there is a procedure that sometimes
knows with 100% certainty that X was drawn from Q rather than P , then Q
is not absolutely continuous with respect to P . For example, suppose S = R,
Q is the standard normal measure, P is the exponential, and A = (−∞, 0). If
X ∈ A we know X came from the gaussian measure because the exponential
probability of A is zero.

If measure Q is not absolutely continuous with respect to measure P , it is
common that the two measures are “completely singular” with respect to each
other. This means that there is a partition with P (AP ) = Q(AQ) = 1, and
therefore Q(AP ) = 0 = P (AQ). If measures P and Q are completely singular
then there is a hypothesis test that is right 100% of the time. For example, if
P is the standard normal measure and Q = δ is a delta measure corresponding
to X = 0 with probability 1, then we take AP to be all real numbers except
zero and AQ = {0}. The hypothesis test is to say “normal” if X 6= 0 and “δ”
if X = 0. If the only choices are standard normal or delta, you can never be
wrong doing this.

8.1.11 Absolute continuity of diffusion measures:

It is possible to distinguish diffusions with different σ in this way. The main

fact is that 〈X〉T =
∫ T

0
σ(Xt, t)

2dt. If we know everything about the path, we
will be able to compute (∆t = T/n, tk = k∆t):

〈X〉T = lim
∆t→0

n−1∑
k=0

(
Xtk+1

−Xtk

)2
(8.2)

Suppose we are trying to guess whetherX satisfies dX = a0(Xt, t)dt+σ0(Xt, t)dWt

or dX = a1(Xt, t)dt+σ1(Xt, t)dWt. We compute the quadratic variation for our

path Xt (8.2) and see whether it is equal to
∫ T

0
σ0(Xt, t)

2dt or
∫ T

0
σ1(Xt, t)

2dt.
If σ2

0 6= σ2
1 , it is impossible for both to be correct (but for the unlikely possibility

that σ0 = −σ1). This proves the negative part of Girsanov’s theorem:
Theorem: If σ2

0 6= σ1, then the measures corresponding to stochastic processes
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dX = a0dt+σ0dW and dX = a1dt+σ1dW are completely singular with respect
to each other.

8.1.12 Likelihood ratio for SDE solutions:

The positive part of Girsanov’s theorem is about the measures for SDE solu-
tions with the same σ but different drift, a. Suppose we have dX = a0(X, t) +
σ(X, t)dWt and dX = a1(X, t)+σ(X, t)dWt, which determine measures in path
space dP0(X) and dP1(X) respectively. The theorem states that the two mea-
sures are absolutely continuous with respect to each other and gives a formula,
the Girsanov formula, for the likelihood ratio, or Radon Nikodym derivative,
L(X). To be technically more precise, we consider a time T and paths up to
time T . Then L(X) is a function of the whole path up to time T .

Our strategy for finding the Girsanov formula is to find the formula for L∆t,
the likelihood ratio for the forward Euler approximations to the two processes.
The limit L(X) = lim∆t→0 L∆t will then be clear. There are probably some
technicalities needed for a complete mathematical proof, but I will not dwell on
them (an understatement).

8.1.13 Multiplying conditional probability densities:

This is a reminder of rule of conditional probability density density that will
be used in the following paragraph. Suppose we first choose a random variable,
X, from the probability density u(x), then choose the random variable Y from
the conditional density v1(y | X). The resulting pair (X,Y ) has joint PDF
U(x, y) = u(x)v(y | x). If we then choose Z from the density v2(z | Y ), the
PDF for the triple (X,Y, Z) will be U(x, y, z) = u(x)v1(y | x)v + 2(z | y). This
is a version of a rule we used for Markov chains: we multiply the conditional
probabilities (transition probabilities) to get the joint probability of the path.
Here the path is the triple (X,Y, Z), but clearly it could be longer.

8.1.14 Measure for the forward Euler method:

Our standard notation is ∆t = T/n, tk = k∆t, ∆Wk = Wk+1 − Wk, and
Xk ≈ Xtk . The approximation is

Xk+1 = Xk + a(Xk, tk)∆t+ σ(Xk, tk)∆Wk . (8.3)

We want an expression for the joint PDF, U(x1, . . . , xn), of the n random vari-
ables X1, . . ., Xn. The conditional probability density for Xk + 1 conditioned
on Fk actually depends only on Xk and tk. We call it u(xk+1 | xk; tk,∆t). The
semicolon separates the conditioning variable, xk, from the other arguments,
tk and ∆t. As in the previous paragraph, this is built up by multiplying the
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conditional probability densities:

U(x1, . . . , xn) =

n−1∏
k=0

u(xk+1 | xk, tk,∆t) . (8.4)

For simplicity we suppose that X0 = x0 is specified and not random. If X0 were
random with probability density u0(x0), we would multiply U by this factor.

The big PDF, U , is the PDF for the approximate path, X, up to time T .
Because time is discrete, this approximate path consists of the n values, xk.
We follow the convention of using lower case letters, xk to be the variables
corresponding to the random variables Xk. Suppose, for example, we want to
know the probability that the approximate path is less than r for all tk ≤ T .
This is the event A = {xk ≤ r, 1 ≤ k ≤ n}, so it’s probability is given by∫ x1=r

x1=−∞
· · ·
∫ xn=r

xn=−∞
U(x1, . . . , xn)dx1 · · · dxn =

∫
A

U(~x)d~x ,

using the notation ~x = (x1, . . . , xn) ∈ Rn for the n numbers representing the
discrete path.

Particularly when ∆t is small, the Xk will be strongly correlated with each
other, though none is entirely determined by the others. It does not make sense
to say the xk are correlated because they are not random variables. It is true,
as we are about to see, that U is very small if xk is far from the neighboring
values xk−1 and xk+1, corresponding to the fact that is is unlikely for Xk to be
far from the values Xk−1 and Xk+1.

After this buildup, here is the calculation. From the forward Euler formula
(8.3), it is clear that conditioned on Xk, Xk+1 is a gaussian random variable
with mean Xk + a(Xk, tk)∆t and variance σ(Xk, tk)2∆t. Conditioned on Fk,
the only thing random in (8.3) is ∆Wk, which is gaussian with mean zero and
variance ∆t. Therefore, the formula for u(xk+1 | xk; tk,∆t) is just the gaussian
formula for xk+1 with the appropriate mean and variance:

u(xk+1 | xk; tk,∆t) =
1√

2πσ(xk, tk)2∆t
exp

(
−(xk+1 − xk −∆ta(xk, tk))2

2σ(xk, tk)2∆t

)
.

96


